17-19 April 2024
Asia/Taipei timezone

Progress of HEPS Cryogenic System

18 Apr 2024, 13:50
20m
L100 ( Research Building)

L100

Research Building

WG7: Cryogenics, cryomodule and superconducting technology for accelerators WG7

Speaker

Rui Ge (IHEP, CAS)

Description

High Energy Photon Source (HEPS) is a high-performance and high-energy synchrotron radiation light source with a beam energy of 6GeV and an ultra-low emittance of better than 0.06nm×rad. The HEPS is mainly composed of accelerator, beamlines and end-stations.The cryogenic system includes a helium refrigerator system and a nitrogen cryogenic plant. The helium refrigerator system has been consisted of a helium refrigerator on a capacity at 2000W@4.5K, a cryogenic distribution transfer system and helium recovery and purification system for 10 superconducting radio frequency cavity cryomodules. The pressure stability at ±1.50mbara of the low pressure in helium compressors has achieved, which is a great significance to these superconducting radio frequency cavities. The nitrogen cryogenic plant is crucial for creating and maintaining operational conditions of the thermal shield of superconducting radio frequency cavity cryomodules, precooling the helium refrigerator coldbox, cooling photon beamline cryostats and cryogenic inserts in the HEPS. The nitrogen cryogenic plant has an average capacity about 50kW at 80K in the HEPS phase I. The nitrogen cryogenic plant is mainly included of nitrogen cycle refrigerator system at 7000W@90K and 100Nm3/h, two liquid nitrogen tanks and cryogenic fluid distribution tube network. The HEPS project engineering implementation has started at June 2019 and will be finished in the end of 2025. The Schematic diagram, status and recent machines commissioning of the cryogenic system are described in this paper.

Primary authors

Presentation Materials