FEL Winter School, NSRRC, Jan. 17-21, 2022

Fundamentals of Free-electron Laser

*Photograph adapted from

X-ray Free-Electron Laser Imaging Of Enzymes •Press Release - Source: University of Wisconsin-Milwaukee, Posted November 18, 2019 1:07 PM

http://astrobiology.com/2019/11/x-ray-free-electron-laser-imaging-of-enzymes.html

"microcrystals are injected (top, left) and a reaction is initiated by blue laser pulses hitting the proteins within the crystals (middle, left). The atomic structure of the protein (right) is probed during the reaction by the X-ray pulses (bottom, left)."

黃衍介 Yen-Chieh Huang

ychuang@ee.nthu.edu.tw, tel: +886-3-5162340, fax: +886-3-5162340

High-energy OPtics & Electronics (HOPE) Laboratory Department of Electrical Engineering/Institute of Photonics Technologies/Department of Physics/TOP Center, National Tsinghua University, Hsinchu 30013, Taiwan 1

Outlines

Part I – fast-wave (Undulator) FEL

- 1. Spontaneous emission Compton scattering/Thompson scattering/undulator radiation
- 2. Stimulated emission wave/particle energy exchange \rightarrow laser gain
- 3. Requirements for FEL Oscillator: buildup time, energy spread, emittance, saturation power, etc.

Part II – Slow-wave FEL

Cherenkov, Traveling-wave Tube (TWT), Backward-wave Oscillator (BWO), Smith-Purcell FEL

Part I – Fast-wave (Undulator) FEL

Parameters in Relativistic Mechanics

Lorentz factor $\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$

 $\overline{\overline{\beta^2}}$

Moving particle

where $\beta \equiv v / c$, with *c* = speed of light in vacuum.

Electron mass in motion: $m = \gamma m_0$, m_0 = electron rest mass 9.1×10⁻³¹ kg

Electron momentum: $p = mv = \gamma m_0 v$

Total electron energy: $\gamma m_0 c^2 = \sqrt{m_0^2 c^4 + p^2 c^2}$, $m_0 c^2$ = electron rest energy ~ 0.51 MeV

In laboratory frame: length LIn electron frame: length $L/\gamma \leftarrow$ Lorentz contraction

In the relativistic regime $\beta \equiv v/c \sim < 1$

Photon-electron Energy Exchange in Free Space

requirements: energy conversation & momentum conservation

Energy (E)**Electron Energy:** $E = \sqrt{m_0^2 c^4 + p^2 c^2}$ Photon Energy: E = pc $m_0 c^{|\bar{2}|}$ m_0 : electron rest mass Electron cup c: light speed in vacuum Photon cone Photon emission Momentum (P)Photon absorption

Energy-momentum diagram of Compton Scattering

Photon-electron energy exchange is prohibited in a vacuum unless a third particle exists or is created

Thomson Back Scattering:

Given $\lambda = 800$ nm (Ti:sapphire laser), $\gamma \gamma_z = 45$ (23 MeV beam), $\lambda_r = 1$ Å (hard x-ray!)

Longitudinal Lorentz factor
$$\gamma_z \equiv \frac{1}{\sqrt{1 - \beta_z^2}}$$

where $\beta_z \equiv v_z / c$

Spontaneous Undulator Radiation

For $\lambda_u \sim 1$ cm, 100 MeV($\gamma_z \sim 200$), $\Rightarrow \lambda = 125$ nm

"Cheap" long-wavelength virtual photon \Rightarrow expensive short-wavelength photon

Effect of Magnetic field on e⁻ Quiver Motion A general assumption: a relativistic beam $\gamma >> 1$ \vec{B} Assume a planar/linear wiggler with a wiggler field of $\vec{B} = \hat{y}\sqrt{2B_{rms}} \sin k_{\mu}z$ Begin with the Lorentz force equation $\frac{d\vec{p}}{dt} = e\vec{v} \times \vec{B}$, where $\vec{p} = \gamma m_0 \vec{v}$ $v^2 = v_x^2 + v_x^2$. $v_{x} \approx \frac{-\sqrt{2}ca_{u}}{\gamma} \cos(k_{u}z) = \frac{-\sqrt{2}ca_{u}}{\gamma} \cos(k_{u}v_{z}t) \quad \text{Wiggler wavenumber}$ $\gamma_{x} \cos(k_{u}v_{z}t) \quad k_{u} = 2\pi/\lambda_{u}$ $v_z = \sqrt{v^2 - v_x^2} \approx v - \frac{a_u^2}{2\gamma^2} \frac{c}{\beta} \cos(2k_u z)$ $= v - \frac{a_u^2}{2\gamma^2} \frac{c}{\beta} \cos(\frac{2k_u v_z t}{\omega_z}) \qquad \text{where } a_u = \frac{eB_{rms}}{m_0 ck_u}, \varphi \sim \left(\frac{v_x}{v_z(\sim c)}\right)_{rms} = \frac{a_u}{\gamma}$ Wiggler parameter propagation angle z oscillation frequency

Undulator Radiation Wavelength

Because

$$\gamma_z \equiv \frac{1}{\sqrt{1 - \beta_z^2}} = \frac{1}{\sqrt{1 - v_z^2 / c^2}}, \text{ and } \lambda \approx \frac{\lambda_u}{2\gamma_z^2}$$

ere
$$a_u = 0.093B_{rms}$$
 (kgauss) × λ_u (cm)

is called the *wiggler/ undulaotor parameter*

$$\lambda = \frac{1 + a_u^2}{2\gamma^2} \lambda_u \quad \text{(FEL synchronism condition)}$$

Undulator radiation wavelength can be tuned by magnetic field *B*, wiggler period λ_u , and electron energy γ ¹⁵

Electron-Wave Energy Exchange

 $\frac{dK}{dt} = e\vec{v} \cdot \vec{E} \qquad K: \text{ electron kinetic energy}$

Wave Amplification
$$\Delta W = \int \vec{F} \cdot \vec{v} dt = e \int_{\tau = L/v_{//}} \vec{E} \cdot \vec{v} dt < 0$$

Particle Acceleration $\Delta W = e \int_{\tau = L/v_{//}} \vec{E} \cdot \vec{v} dt > 0$

$$\sum_{t=L/v_{//}} \vec{E} \cdot \vec{v} dt > 0$$

$$\sum_{t=L/v_{//}} \vec{E} \cdot \vec{v} dt > 0$$

Transverse Coupling (Eg. Compton/Thomson/undulator radiation etc.)

$$\Delta W = e \int_{\tau = L/v_{//}} \vec{E}_{\perp} \cdot \vec{v}_{\perp} dt$$

Longitudinal Coupling (Eg. Smith-Purcell radiator, Traveling wave tube, backward-wave oscillator etc.)

$$\Delta W = e \int_{\tau = L/v_{//}} \vec{E}_{//} \cdot \vec{v}_{//} dt$$

Resonant Interaction between Electron and Field

To have FEL gain

$$\Delta W = e \int_{\tau = L_u/v_z} \vec{E} \cdot \vec{v} \, dt < 0 \qquad L_u \text{ is the length of the undulator}$$
For $E_x = E_0 \cos(\omega t - kv_z t + \phi)$ and $v_x = \frac{-\sqrt{2}c_0 a_u}{\gamma} \cos(k_u v_z t)$
 $\vec{E} \cdot \vec{v} \propto \cos\{[k - (k + k_u)\beta_z]ct + \phi\} + \cos\{[k - (k - k_u)\beta_z]ct + \phi\}$

Whether $\vec{E} \cdot \vec{v} > 0$ (radiation) or $\vec{E} \cdot \vec{v} < 0$ (particle acceleration) depends on ϕ

To have appreciable value in $\begin{aligned} \int_{\tau=L_u/v_z} \vec{E} \cdot \vec{v} \, dt \\ k - (k + k_u) \beta_z &= 0 \implies \lambda = \frac{1 + a_u^2}{2\gamma^2} \lambda_u \end{aligned}$ The FEL synchronism condition $k - (k - k_u) \beta_z = 0 \implies \beta_z \equiv v_z / c_0 > 1$ Impossible in vacuum 19

light slips one wavelength ahead per wiggler period

$$\lambda = \lambda_u \left(\frac{1}{\beta_z} - 1\right) \approx \frac{\lambda_u}{2\gamma_z^2}$$

Pendulum Equation

The pondermotive (beat) phase $\psi = (k + k_u)z - \omega t$

was previously found from the beam-wave energy coupling equation

$$\frac{dK}{dt} = ev_x E_x = \frac{ec_0 a_u E_0}{\sqrt{2\gamma}} \cos\left\{ \omega t - (k + k_u)z(t) + \phi \right\}$$

power loss of an electron = time rate change of electron's kinetic energy

Take first derivative of ψ with respect to z and use the FEL synchronism condition $k - (k + k_u)\beta_{z,r} = 0$ to obtain

$$\frac{d\psi}{dz} = 2k_u \frac{\gamma - \gamma_r}{\gamma_r} = 2k_u \frac{\Delta\gamma}{\gamma_r}$$

where γ_r is the resonant particle energy satisfying the synchronism condition

$$\lambda = \lambda_u \frac{1 + a_u^2}{2\gamma_r^2}$$
 or $k_u = k \frac{1 + a_u^2}{2\gamma_r^2}$

A second derivative to the beat phase with respect to *z* gives the

pendulum equation

$$\frac{d^2\psi}{dz^2} = -k_{\psi}^2 \sin\psi$$

where
$$k_{\psi}^2 = \left[\frac{e}{\gamma_r m_0 c_0}\right]^2 \frac{\sqrt{2}B_{rms}E_0}{c_0} \equiv \left(\frac{2\pi}{L_{\psi}}\right)^2$$
 L_{ψ} : synchrotron oscillation wavelength

For a small
$$\Psi$$
, $\frac{d^2 \psi}{dz^2}$

 $\frac{d^2\psi}{dz^2} \sim -k_{\psi}^2\psi$

Particles oscillate, drift in the pondermotive phase .

Recall the harmonic oscillator equation

http://hyperphysics.phyastr.gsu.edu/hbase/oscda.html

With the definition of k_{w} , the *phase diagram* can be plot from

$$\frac{d\psi}{dz} = \pm \sqrt{2}k_{\psi}\sqrt{\cos\psi + 1} = 2k_{u}\frac{\Delta\gamma}{\gamma_{r}}$$

The bucket height = 4 k_{ψ} , and the maximum energy extraction occurs at half synchrotron wavelength: FEL length is $\sim L_{\psi}/2$

The maximum energy efficiency for an FEL =

FEL Gain
$$G = \frac{W_f - W_i}{W_i} = e^{gL_c}$$

To have gain

F

$$W = e \int_{\tau = L_u/v_z} \vec{E} \cdot \vec{v} dt < 0$$
 L_u is the length of the undulator

or
$$E_x = E_0 \cos(\omega t - kv_z t + \phi)$$
 and $v_x = \frac{-\sqrt{2}ca_u}{\nu} \cos(k_u v_z t)$

whether $\vec{E} \cdot \vec{v} > 0$ (radiation) or $\vec{E} \cdot \vec{v} < 0$ (particle acceleration) depends on ϕ

•Gain is small for short wavelength FEL

•Electron injection energy has to be detuned from synchronism (slightly larger)

•Energy spread can't exceed where N_u is the number of wiggler periods

Energy Spread Requirement

Refer to the FEL gain curve, for an electron to contribute its energy to the FEL gain, the acceptance phase width has to be confined to 2π or

So, the energy spread of the electron beam for an FEL has to be less than $1/(2N_u)$

Emittance Requirement for an FEL

 Z_R

An Electron Beam

The phase (angle-position) space area of electrons is called the beam's geometric emittance ε

A Gaussian Laser Beam Rayleigh range $z_{o,R} = \frac{\pi W_0^2}{\lambda}$

Far-field diffraction angle = θ

The phase space (angle and laser beam size) area is $\pi \times \theta \times w_0 \sim \lambda$

To place an electron beam Inside an optical beam

 $\varepsilon < \lambda$

Therefore long-wavelength FEL is more forgiving to electron-beam quality

FEL Gain Bandwidth

The spectral bandwidth is defined by the variation of the spectral ratio

within the half width of the gain curve

$$\Delta \Psi = \left| \Omega \tau = \left[\omega - (k + k_u) \overline{v}_z \right] \frac{L}{\overline{v}_z} \right| < \pi$$

From the FEL synchronism condition $\lambda = \lambda_u \frac{1 + a_u^2}{2\gamma^2}$, it is straightforward to show $\left| \frac{\Delta \lambda}{\lambda} \right| = 2 \left| \frac{\Delta \gamma}{\gamma} \right|$

However the maximum allowed $\Delta \gamma / \gamma < 1/(2N_w)$ is obtained from the full width. For a half width

$$\left|\frac{\Delta\lambda}{\lambda}\right| = 2\left|\frac{\Delta\gamma}{\gamma}\right| < 2 \times \frac{1}{2N_u} \times \frac{1}{2} = \frac{1}{2N_u}$$

Characteristics of an Undulator FEL

- 1. Laser: a coherent light source
- 2. Wavelength tunable:

by varying the magnetic field and the electron energy

- 3. High peak power: GW-MW in 0.1~10 psec micropulse
- 4. High average power: kW in $> \sim \mu$ sec macropulse

General Requirements for Building an FEL Oscillator

Gain > loss

In particular i. Electron energy spread $\Delta \gamma / \gamma < 1/2N_u$ ii. Electron emittance $\varepsilon < \lambda$

Part II – Slow-wave FEL

Cherenkov, Traveling-wave Tube (TWT), Backward-wave Oscillator (BWO), Smith-Purcell FEL

where $v_{//}$ is the electron's longitudinal velocity and $c_{//}$ is the speed of an EM wave along the same direction.

But the vacuum speed of an EM wave c_0 is always larger than electron moving speed, and thus

$$C_0 > V_{//}$$
 (2)

Eq. (1) is possible only for two situations:

- 1. The EM wave is in a medium with refractive index *n* > 1
- 2. The EM wave is an evanescent/slow wave

Dispersion Diagram with a Beam Line

----- dispersion curve of a slow-wave electromagnetic structure

- Slope of the curve \rightarrow phase velocity $c_{//}$
- Tangent of the curve \rightarrow group velocity

$$v_e > \frac{c_0}{n} = c$$
 (Cherenkov threshold)
The angle $\theta_c = \cos^{-1}(\frac{1}{n\beta})$ is called the Cherenkov angle. (5)

Assume no variation along *x*, substitute $E \sim e^{-jk_z z - \alpha y}$ into the Helmholtz equation

 $\nabla^2 E_z + k_0^2 E_z = 0$ to obtain $k_0^2 = k_z^2 - \alpha^2$.

The condition
$$C_{//} = V_{//}$$
 means $c_z = \frac{\omega}{k_z} = \frac{\omega}{\sqrt{k_0^2 + \alpha^2}} = \frac{c_0}{\sqrt{1 + \alpha^2 / k_0^2}} = v_e$ (6)

Note that $c_0 > v_e$. By properly designing α (through the structure or material), it is possible to match the condition $c_{//} = v_{//}$

For
$$\gamma >> 1$$
, Eq. (6) further reduces to $\alpha = \frac{2\pi}{\beta \gamma \lambda_0}$ or $\frac{1}{\alpha} = \frac{\beta \gamma \lambda_0}{2\pi}$ (7)

where λ_0 is the radiation wavelength in vacuum.

The distance between the electron and the material surface d_i is called the *impact parameter*.

To have appreciable coupling in $\Delta W = e \int_{\tau = L/v_{||}} \vec{E}_{||} \cdot \vec{v}_{||} dt$, one will certainly position

the electron beam within a transverse distance < $1/\alpha$ or

$$d_i < \frac{1}{\alpha} = \frac{\beta \gamma \lambda_0}{2\pi}$$

This condition tells "**long radiation wavelength and high energy beam**" will make the alignment much easier for this kind of radiation device (Cherenkov & Smith-Purcell).

With a grating structure, the dispersion curve bends.

However, a grating (periodical structure) is not just a slow-wave structure , but **a resonant structure!**

The condition for the constructive interference in the far-field zone, **BC-AD** $\stackrel{\perp}{=}$ **integer multiple of wavelength**, is governed by the well known grating formula

For the special case of $\theta_i = 0, \theta_r = 180^\circ$ (reflection resonance) and m = 1, (10) it gives the well known **distributed feedback resonance** in modern optics $\Lambda_g = \frac{\lambda_0}{2}$

Smith Purcell Radiation: grating resonant radiation

Note that the Smith-Purcell and slow-wave frequencies are different

To have energy coupling, the SP mode is phase matched to the SW mode on the surface

Matching k along z:
$$k_{sp,z} = k_{sp} \cos \theta = k_{sw,z}$$
 (14) and $k_{sp} = \frac{2\pi}{\lambda_{sp}}$. (15)
But, for a slow wave, $k_0^2 = k_z^2 - \alpha^2$, $\rightarrow k_{sw,z}^2 = k_{sw}^2 + \alpha^2$ (16)
Combine (14) and (16) to obtain $k_{sp}^2 \cos^2 \theta = k_{sw}^2 + \alpha^2 \rightarrow k_{sp}^2 = \frac{k_{sw}^2}{\cos^2 \theta} + \frac{\alpha^2}{\cos^2 \theta}$

Since $\cos^2 \theta \le 1, \alpha > 0$, one has $k_{sp}^2 > k_{sw}^2$ or $\lambda_{sw} > \lambda_{sp}$. (17)

Wave-electron energy exchange (longitudinal coupling)

Start with a single particle. The rate of loss or gain of electron's kinetic energy is $dK \rightarrow dK$

$$\frac{d\kappa}{dt} = \vec{F} \cdot \vec{v} = -ev_z E_z , \qquad (18)$$

where the electron kinetic energy and the E_{z} field are

$$K = (\gamma - 1)m_0 c_0^2, E_z = E_0 \cos(\omega t - k_z z + \phi)$$
(19)

Define the phase $\psi = k_z z - \omega t - \phi + \frac{\pi}{2}$ to obtain the **pendulum equation**

$$\frac{d^2\psi}{dz^2} = -k_{\psi}^2 \sin\psi \qquad (20)$$

where $k_{\psi} = \sqrt{\frac{\omega e E_0}{\gamma_r^3 v_r^3 m_0}} \equiv \frac{2\pi}{L_{\psi}}$ (21) with the resonant electron speed $v_r = \frac{\omega}{k_z}$

and the resonant electron energy $\gamma_r = \frac{1}{\sqrt{1 - v_r^2 / c_0^2}}$ (22), and L_{ψ} the so-called "synchrotron wavelength".

The rest is the same as the discussion for the fast-wave (undulator) FEL.⁴