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THz pulse generation
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Overview of laser-based THz generation
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Photoconductive antenna
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Optical rectification w-w=0
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Phase matching condition for OR
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Tilted pulse front in LINbOj,
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Intense THz pulses
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THz pulse detection



Table 2. Typical THz Detectors/Cameras Operating at Room Temperature

Detector Detection Principle NEP Array References
(pW/+/Hz)
Thermal
Microbolometer Resistive change by thermal excitation ~ 10-111) Possible [52-54]
(Section 4.1)
Pyroelectric detector Polanzation change by thermal ~10—=1000 Possible [353-57]
excitation of a pyroelectric crystal (Section 4.1)
Golay cell Pressure change by thermal ~100-1000  Single-pixel [38]
excitation of an encapsulated gas
Mixer
Schottky-barrier diode High-frequency detection enabled ~ 10=11010 Possible [59,60]
by fast switching speeds in
metal/semiconductor junction
Plasmonic detector
Field-effect transistor Plasmonic excitation of electronic ~ 10-=100 Possible [61-63]
charge densifies in transistor channels (Section 4.2)
Optically triggered (THz-TDS)
Photoconductive antenna Ultratast photoexcitation of charge — Possible [40—46]
carriers in a semiconductor gap (Section 3.3)
Electro-optic sampling Biretringence-induced by THz pulse — Possible [64—6E]
in nonlinear media (Section 3.4)
Air-biased-coherent- THz field-induced second hamonic — Single-pixel [69,70]

detection (ABCD)

(TFISH) in plasma gas

“The noise-equivalent power (NEP) 1s defined as the input power that gives a signal-to-noise rato of
1 with a 1 Hz output bandwidth. It 1s a measure of the minimum detectable power, and a lower NEP

indicates a more sensitive detector.

Guerboukha et al. Adv. Opt. Photonics 2018



THz field detection by electro-optic sampling
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Single-shot THz detection
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Ultrafast THz spectroscopy



Ultrafast optics

Unit

attosecond

femtosecond

picosecond

nanosecond

microsecond

millisecond

Size

10-18¢

10-155

10-12¢

Notes

shortest time now
measurable by scientists

pulse width on
world's fastest lasers

switchin? time of the
world's fastest transistor

time for molecules
to fluoresce

length of time of a
high-speed, strobe light flash

time for a housefly's
wing flap

Ultrafast Optics
(too fast to be monitored

with electronics)

Harold Eugene Edgerton, MIT



Ultrafast laser pulses (ps

Why?

* High peak power or intensity
* Nonlinearity
e Laser machining

 Short duration

* Excite materials “instantly”
e Ultrafast snapshot

* Monitor dynamics with high temporal resolution

* Broad bandwidth
Spectroscopy

How?
* Large bandwidth
* Phase correlation (Modelocking)
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Pump-probe spectroscopy

Excite the sample and observe what happened in the femtosecond timescale

J. Am. Chem. Soc. 2020, 142, 1, 3-15



Terahertz gap

Electronics Photonics

- L —

Wavelength 10m 1m 10i:m 1c|m lrrllm 100pum 10pum 1pum 100nm

. : mm ' Ultra-
Radio wave Microwave THz Infrared :
Wave violet

I I I I
Frequency 10MHz 100MHz 1GHz 10GHz 100GHz 1THz 10THz 100THz 1PHz 10PHz

1THz=1ps=33cm1=0.3mm=4.1 meV=48K



THz time-domain spectroscopy
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Measure THz in time domain and then Fourier transform

Ferguson, B., Zhang, XC. Materials for terahertz science and technology. Nature Mater 1, 26—-33 (2002).



ldentify explosives and drugs

Table 1. Collection of absorbance peak positions of some explosives and drugs. Conversion to units of wavenumbers requires
multiplication by 33 cm~' = 1 THz.

Feature band centre position

Material frequency (THz) Reference
Explosive
Semtex-H 0.72,1.29, 1.73, 1.88, 2.15, 245,257 [12]
bbb e e PE4 0.72,1.29,1.73,1.94,2.21,2.48,2.69 [12]
. Semte)é RDX/ C4 0.72,1.26, 1.73 [12, 14, 27]
E 3 PETN®* 1.73,2.51 [12]
_;’:‘ ;'/‘/-/\A/\ PE4 3 PETN® 2.01 [16]
: J\f},\j\ : HMX: 1.58, 191, 2.21, 2.57 [12]
=E HMX 1.84 [16]
8 J\/J\/ R TNT* 1.44, 191 [12]
9 f . TNT® 1.7 [16]
g} \—‘/\/\ PETN TNT 5.6,8.2,9.1,9.9 120, 27]
g .' HMX-: NH4NO; 4,7 [16, 22]
aE 3 Drugs
8 ,:_ TNE _. Methamphetamine 1.2,1.7-1.8 [23]
g ] i MDMA 14,1.8 [23]
- g Lactose e-monohydrate  0.54, 1.20, 1.38, 1.82, 2.54,2.87,3.29 [12]
E 3 Icing sugar 1.44,1.61,1.82,2.24,2.57,2.84,3.44 [12]
B iRt FPPrTTrTT PP Liaiiiieis Co-codamol 1.85,2.09,2.93 [12]
0 1 2 3 4 Aspirin, soluble 1.38, 3.26 [12]
Frequency (THz) Aspirin, caplets 14,224 [12, 23]
Acetaminophen 6.5 [19]
Terfenadine 3.2 [19]
Naproxen sodium 5.2,6.5 [19]

® Samples are prepared as pellets using spectrographic-grade polyethylene.

b Samples are ordered as compressed pellets from Accurate Energetics LLC. All
materials are in sensitized form (water-free).

Federici et al. Semicond. Sci. Technol. (2005)



Drugs in envelopes
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Fig. 2. View of the samples. The small polyethylene bags contain from left to right: MDMA,
aspirin, and methamphetamine. The bags were placed inside the envelope during imaging. The
area indicated by the yellow line represents the imaging target, 20x38mm in size. Since

methamphetamine and aspirin are similar in appearance, we used a slightly longer bag for the
latter to avoid confusion.
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Fig. 3. Seven multispectral images generating a matrix [/].

Kawase, Opt. Express (2003)



Hidden paint layers
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C. Seco-Martorell, V. Lopez-Dominguez, G. Arauz-Garofalo, A. Redo-Sanchez, J. Palacios, and J.
Tejada, "Goya’s artwork imaging with Terahertz waves," Opt. Express 21, 17800-17805 (2013)



THz-pump optical-probe spectroscopy
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Kampfrath, T., Tanaka, K. & Nelson, K. Resonant and nonresonant control over matter and light by intense
terahertz transients. Nature Photon 7, 680—-690 (2013).
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2D THz and 2D THz-Raman spectroscopies
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2D THz spectroscopy
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2D THz spectroscopy with single-shot detection
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2D THz spectroscopy in gas
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THz-THz-Raman spectroscopy
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J. Phys. Chem. Lett. 2017, 8, 18, 46404644



THz-THz-Raman spectroscopy of Bromoform
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(d) wave mixing energy level diagram for feature V
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Raman-THz-THz spectroscopy
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Raman-THz-THz spectroscopy of water
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THz-pump X-ray-probe spectroscopy in VO,
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THz-pump X-ray-probe spectroscopy in STO
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Orenstein, G., Krapivin, V., Huang, Y. et al. Observation of polarization density waves in SrTiOs3. Nat. Phys. 21, 961-965 (2025).
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