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» Short review for high gain FELs
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https://www.youtube.com/watch?v=YTj4Hi1HdJQ
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Static properties of matter

Static picture of a macro-molecule

Need light!

Required properties

- Short wavelength (X-ray)

- Ultra-short pulse (few femtoseconds)

- Coherence

- High energy per pulse

t=-2fs {=2fs t=51s t=10fs t=-20fs t=50fs

NCU / NSRRC



Free electron laser

* A Free electron laseris an accelerator based light source that can generate intense
radiation from a relativistic electron beam in a periodic magnetic field

Basic
* Relativistic electron beam components
Energy (v)
Current (I)
Emittance (&)
 Undulator : periodic magnetic field Energy spread (4y)

Undulator period (4,,)
Undulator parameter (K) —
Undulator length (L)

* Electromagnetic field : propagating with

electron beam and getting amplified.
Resonant wavelength (4)

Saturation power (P) —

i A K2
Resonant condition A = 2—;‘2 (1+ 7)
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Key parameters for FELs
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Outline

» Electron Beams from Plasma Acceleration
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Accelerating Gradient

Conventional RF Cavities Plasma Acceleration

SRR

3

PHASES OF MATTER

o 2@ o

&
4LOW i ng'h}
Accelerating fields are limited to <100 MV/m Plasma is already ionized or “broken-down” and can
In metallic structures, a too high field level leads to sustain electric fields up to three orders of magnitude
break down of surfaces, creating electric discharge higher gradients
Fields cannot be sustained; structures might be > order of 100 GV/m.
damaged. - ~1000 factor stronger acceleration!
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Example: Spring-8

XFEL/SPring-8

Building construction Experimental Hall
completed March 2009 (under construct|on) (
| Undulator Hall | S

Undulator Hall

400 m Accelerator Tunnel

0.1 nm, X-ray pulse Iength 200 fs~ 20 fs, peak power 20 GW

\.\‘ N
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Electron energy and energy spread

Plasma density (1  10'® cm~3)
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* Boththe density down ramp and the laser self-focusing contributed to the occurrence of injection

* The energy spread was compensated due to the evolution of the laser and the beam loading effects.
* The accelerating gradient was reached to 142 GV/m on average.

* The electron beam energy can reach 0.8GeV with sub percent energy spread and pm emittance
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Peak current and bunch length
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* Injected beam current can be tuned by varying the plasma length

* Typically, LPA can generate electron with peak current up to tens of kA and um bunch length

N C U / N S R RC Céline S. Hue, et.al. Control of electron beam current, charge, and energy spread using density downramp injection in laser wakefield accelerators



Beam divergence
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* Anelectron beam is accelerated in the first gas jet (accelerator), then it enters free space where it
diverges and is eventually focused in the second gas jet (lens).
* Beam divergence can be focused using a plasma lens from 4.1mrad to 1.5 mrad

N C U / N S R RC Thaury, C., Guillaume, E., Dopp, A. et al. Demonstration of relativistic electron beam focusing by a laser-plasma lens. Nat Commun 6, 6860 (2015).




Overview of LPA beam

LPAs electron beam Trapped electagns .
Pros

* High energy: GeV level

* High peak current: a few kA

* Low emittance: sub mm-mrad

Acceleration phase

Cons I’ Tajima and J. M. Dawson,
* Energy spread: few % level Phys. Rev. Lett. 43, 267 (1979).

* High divergence : mrad level
* Shot to shot jitter

Table 1. Summary of parameters from different laboratories

Energy Energy Spread ! Charge ! Emittance !
Laboratory (GeV) (%) (pQ) (mm mrad)
SIOM 0.8 02-1.2 10-50 0.4
DESY 0.3 0.4 500 1.5/0.3
LBNL 7.8 0.2-1 25 0.3-1
LOA 1.1 3.1 120 NA
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* Beam Manipulation: Making LPA Beams FEL-Ready
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Beam Manipulation: Making LPA Beams FEL-Ready
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Energy Compression and Stabilization of Laser-Plasma Accelerators

Beam
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NCU / NSRRC Ref: A. Ferran Pousa et al. Physical Review Letters 129, 094801 (2022)



Design of a prototype laser-plasma injector for an electron synchrotron

drive laser LPA ad triplet pre-stretcher ; .
) ﬂ T chromatic corrector chicane X-banc: cavity
plasma target Iaserdlagnashcs e (m} collimator
0 2 4 6 8 10 12

Prototype injector with X-band energy compression < 520 (f) ' ' ' ' 4
» LUX LPA optimized for lowest energy spread (0.8%) beams at >0 1.4 %
500MeV by means of PIC simulations with FBPIC. L;&_: ([ (g | .
* Beamline simulations (R5¢ = 10 cm, 12GHz) show a reduction of fep L L L L
the relative energy spread down to 0.005%. < 520f ' ' ' ' {4 | -
* Statistics of 1000 bunches with 1% energy jitter exhibits a final - L]
beam energy distribution with 0.04% rms. B SO0y TR S N —— = 0.04 %
« Bunches become 430 times longer (~6ps FWHM): suitable for o o SRARCHIEY
- X . . W 480k 1 10 100 10°4 F A
injection in storage ring. i i : :
0 200 400 600 800 1000

NCU /NSRRC Ref: S.A. Antipov et al. Physical Accelerator and Beams 24, 111301 (2021)



timeline for the implementation of the PIP4 project (as of early 2024).

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

PIP4 project

&

* Moonshot proposal

CDR ¢ s Dark time
]
Phase 1: 1

PETRA IV installation

Technology demonstration

Beamline: ]
LPA LUX (2.5 J) * ECE S-band RF: 300 MeV {0.1%)

Plasma: 1
28M (500 mJ) * LPA with HOFL: 300 Me (1%4)

Phase 2:
Flasma injector prototype * — Injection DESY Il T
Laser: | 1 .
KALDERA *05 —2J/12.5Hz Operation tests
—
Plasma: ¢ 1
¥ HOF / Injection: 0.4 — 1 GaV {1%)
Beamiline: 1
vECB &/ ¥-band RF: 0.4 — 1 GeV (< 0.1%)
; Phase 3: 7
Plasma injector PETRA [V Injection PETRA IV %
Laser development «—— Laser: ¢ =
! v 20 J /32 Hz available for WP
Plasma: ]
v HOFI / Injection: 6 GeV {(1%)
Beamline: )
KALDERA + ECB X-band RF: 6 GeV (< 0.1%)
= ol
Phase 1 # 1. pulses # 3J pulzes

" Phase 2 Final specs.
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Transverse gradient undulator (TGU)

Dispersion | |
2
Plasma Source [ ] p— )\u 1+ K
Undulator " 2y? 2
E E

-

* Such a big energy spread cause different
wavelength;

* How to compensate? K varied with energy also.

R Ary AK
=1— — = Qax
70 K 0
* Transverse Gradient Undulator (TGU) introduced at
dispersion section. Resonance can be satistied for all
beam energies if

24+ K;
77— aK?

NCU / NSRRC Ref: Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a Transverse-Gradient Undulator Phys. Rev. Lett. 109, 204801
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* FEL simulation examples for LPA Beams

NCU / NSRRC



FEL simulation examples for LPA Beams

LWFA Quad triplet Energy compressor Quad doublet  Dechirper Undulator
T
' Y ’ o ) ’ — >
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(a) An ultra-short electron beam directly transports from the LWFA to the undulator. (b) a decompressed electron beam

with lower slice energy spread by adding a 4-dipole decompressor. (c) a dechirped electron beam that cancelled out the
energy chirp by an artificial dechirper.
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Beam transport simulation for LPA Beams
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Transverse beamsize and emittance evolution along the whole beamline
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SASE example for directly injected electron beam

y Y LTI TIETIITELD
l-‘ A ‘ A ’ T
265 : . : 1010
260
g = 8
> 255 = 10 1
s ) T
<250} 3
o o 6
5 é 10 1
c 245} D
1] o
240
10% 1
235 ' ' '
40 20 0 20 40 0 1 2 3 4 S 6 7

2 (um) z(m)
Evolution of the SASE FEL peak power for electron beams with initial electron beam energy spreads of
0.1%, 0.25%, 0.5%, and 1%, respectively.

*  When the energy spread exceeds the FEL Pierce parameter (p =0.0082), no gain is observed.
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SASE example for energy compressed and dechirped beam

LWFA  Quad triplet Energy compressor Quad doublet Dechirper Undulator
265
260 1 0 1 D ] ] ] L] | L]
S 2551 —w/ dechirper
s o :
S 250 w/o dechirper
9 —
€ s} é
240t 5
o BT S
) (A
265 v
@
260T Q
_ (A
% 255¢F
2
= 250F
@
2 245}
[in}
240} -
235 t : : = (m )
40 20 0 20 40

Evolution of FEL peak power along the undulator for the energy compressed
LWFA beam (orange curve) without dechirper and with dechirper (blue curve).
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Effects of electron beam with energy chirp

80.0

0.012
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0 ' = — ' 72.5 0.125
60 65 70 75 80 - oo
_ Wavelength (nm) 67'5 .
* In the energy-compressed case, the spectral peak shifts as the beam § _ 0,050
propagates. This shift reflects increased microbunch separation e o0rs
caused by undulator dispersion acting on an energy chirped beam w00

z (m
» Different slices of the chirped electron beam satisfy distinct Beam spectrum evolution along the undulator
resonant conditions due to their energy differences for the case without/with dechirper.
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Compensation via Longitudinal Tapered Undulator

Untapered undulator

dz Lu 1_|_K2 I O I D D D D B B B e .
o 0 bbb, -
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Az = )/—1;(1 + 5 > * de /‘Lr Phase slippage

Tapered undulator

Aro A’r
) Ay K'* Y N\ .
/1T=/1T+AZ=2—]/2 1+ 5 v, v,

mm ma IDn e I S
Phase matching

2\ 2 2\ 2
1 <1 + K_0> % dy — 1. <1 + KO) * the resonant wavelength can be tuned to
compensate for the bunch lengthening caused by
undulator dispersion
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FEL power evolution after applying tapered undulator

L |——w/ taper
—w/0o taper

o
o
&3]

—w/ taper
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= £ 0.06
D : R
= o
O =
i £ 0.04
% :
o 1 e
o 0.02}
: : 0
0 2 4 6 8 0 2 4 6 8
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Evolution of the FEL radiation peak power and the bunching factor along the undulator for cases with (blue) and without
(orange) longitudinal tapering

* The saturation power has two order of magnitude increase after applying tapered undulator
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Enhanced Performance by a Seeded FEL Scheme

1 L]
—HGHG
—-_:_«08 L |— SASE
3
@ S 0.6}
= A
o >
o @ 0.4
-
9 2
— 0.2} }
0 : :
0.8 0.9 1 1.1 1.2
z (m) Wavelength (M)

Comparison between HGHG (blue) and SASE (red) configurations: (a) evolution of radiation peak power
along the undulator and (b) normalized output spectra.

e The FWHM bandwidth are 1.12/2.03 nm for HGHG and SASE , respectively
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Enhanced Performance by a Seeded FEL Scheme

80.0
0.10

N
~
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= 5 = 004
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- ) = '
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Evolution of the bunching factor as a function of wavelength and undulator position for (a) SASE and (b) HGHG
configurations.

* The seeded HGHG case shows a more localized and stable bunching structure near the resonant
wavelength, indicating improved spectral coherence.
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» Experimental Progress and Ongoing works
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Soft X-ray LPA FEL.: SIOM
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 SIOM, the first compact, table-top FEL electron source with GeV level beam energy.

e SASE lasingat27 nm
 LWFA: two gas jets at different densities. Electron beam energy of 490 MeV within 5 mm: 98 GeV/m

N C U / N S R RC Ref: Jiang, K.; Wang, W. ; Feng, K.; Li, R. Review of Quality Optimization of Electron Beam Based on Laser Wakefield Acceleration, Nature volume 595, pages516-520 (2021)



Potential method to reduce energy spread via tailoring plasma density
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NCU / NSRRC Yu, C., Qin, Z., Xiang, Z. et al. Sub-per-mille bunch energy spread in a quasi-linear laser-wakefield accelerator via

periodical de-chirpings. Commun Phys 8, 137 (2025). https://doi.org/10.1038/s42005-025-02057-6



Seeded EUV LPA FEL: COXINEL
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N C U / N S R RC Ref: Labat, M., Cabadag, J.C., Ghaith, A. et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Nat. Photon. 17, 150-156 (2023)



§ Data -
] 5 S ] IR PWFA FEL: SPARC_LAB
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Proof-of-principle experiment to demonstrate high-quality PWFA acceleration able to drive a Free-Electron Laser

* +6 MeVin 3 cm plasma indicate the acceleration gradient of 200 MeV/m
 Exponential gain of FEL radiation (@ 830 nm). Data taken with 6 (Si) photo-diodes downstream the
undulator

NCU / NSRRC Pompili, R., Alesini, D., Anania, M.P. et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator.



Betatron-Seeded FEL — SPARC _Lab

electron beam chicane

Plasma acceleration chamber FEL undulator

X-ray radiation

— L
e beam

Betatron radiation monochromator

e FEL seeded by PWFA betatron radiation at SPARC_Lab, INFN, EuUPRAXIA
e Chicane + monochromater to select portion of betator radiation

e Seed at short wavelength natural byproduct of PWFA

e Aiming for 4 nm seed & FEL radiation

NCU / NSRRC A. Ghigo, M. Galletti, V. Shpakov. FREE ELECTRON LASER SEEDED BY BETATRON RADIATION



LPA based Super-radiant FEL — SPARC _Lab
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e Chirped femtosecond PWFA beam compressed to attosecond duration
¢ Acts like single microbunch / super-radiance in undulator

N C U / N S R RC Emma, Claudio & Xu, X & Larsen, K & Cryan, J & Hogan, Mark & Macarthur, J & White, Glen & Marinelli, Agostino & Hessami, Rafi & Robles, R & Univeristy, Stanford & Stanford, Usa & Fisher, P & Musumeci,

Los & Angeles,. (2021). PAX: A PLASMA-DRIVEN ATTOSECOND X-RAY SOURCE *. 10.18429/JACoW-IPAC2021-WEPABO072.



Conclusion

* Laser-plasma accelerators (LPAs) provide ultra-high accelerating gradients and open a
realistic path toward compact FEL light sources, significantly reducing facility size and
cost.

* Intrinsic beam quality issues—including large slice energy spread, correlated energy
chirp, divergence, and shot-to-shot fluctuations—remain the primary obstacles to high-
gain FEL operation.

* Beam manipulationisthe key enabler:
Beam transportation, energy compression, dechirping, and undulator tapering can
effectively relax FEL requirements.

* Recent experiments (SIOM, COXINEL, SPARC-LAB) have already shown exponential
gain and seeded lasing, validating the feasibility of plasma-driven FELSs.

* Overall, continued progress in plasma injector control, beam manipulation, and

advanced FEL schemes will be essential for realizing stable, high-repetition-rate, short-
wavelength LPA-based FELs, bridging the gap between tabletop accelerators.

NCU / NSRRC
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