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Pump-probe spectroscopy/Time-resolved spectroscopy: Basic concept
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Pump-probe spectroscopy: Basics concept

A.H. Zewail’s apparatus

Ahmed H. Zewail
1946-2016
The Nobel Prize in

Chemistry 1999

Femtochemistry:
the study of chemical reactions
across femtoseconds.




Pump-probe spectroscopy

~ 100 fs
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Angle-Resolved PhotoEmission Spectroscopy (ARPES)

Time-resolved ARPES
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Time-Resolved-Angle-Resolved PhotoEmission Spectroscopy

~ 100 fs
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Time-Resolved Spectroscopy: Free-Electron Laser (FEL)
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M. Kozina et al, Nat. Phys. 15, 387 (2019).



Terahertz spectrum



Terahertz spectrum

0.3-10THz
electronics THz photonics ELIEE
res.
microwaves visible X-ray -ray
MF, HF,VHF, UHF, SHF, EHF /—\ I
I I I I \1-/ I Correlated
10°  10? 108 10° 10'? 10%> 108 102! 107
Metals
kilo mega giga tera peta exa zetta yotta
Frequency (Hz) BICEE
Example Radio Radar Optical Medical Astrophysics
industries: communications communications imaging Organics

1THz ~ 1 ps~300um ~ 33 cm™ ~4.1 meV ~ 47.6°K

Topological
insulators

Graphene

100 MeV 1000

100 GHz 1000

nm-v i-vi

Spin-o

-n modes and Landau Le_

Localization peaks in disordered conductors

upling

Drude response

Zeeman splitting phonons Inter-band transitions

Superconducting gap polarons

(pseudo)gap in cuprates Charge transfer gap
Magnetic resonances Amplitude modes  m—mt* trans

and strong coupling effe (polymers) (polymers)

Josephson plasmons  Correlation gaps in 1D conductors
bi-polarons

Vibrational modes

Inter-band transitions
Tunable Fermi Energy E; '36nd gap

Tunable band gap in bilayer & band parameters

Interband transitions

1000

I I I N T
1 10

100 10000 cm™

Terahertz band

D. N. Basov et al, “Electrodynamics of correlated electron materials”,

Rev. Mod. Phys. 83, 471 (2011)



Time-Domain Spectroscopy (THz-TDS)

Time-Domain Spectroscopy (THz-TDS):
Basic experimental setup

Optical pulses
~100 fs

pump
I =

| Bs
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THz detector

Y. S. Lee, “Principles of terahertz science and technology”
K. Sakai, “Terahertz optoelectronics”
R. Ulbricht et al., Rev. Mod. Phys., 83, 543 (2011)

Fast Fourier
Transform

Electric amplitudes (FFT)
in time domain

Eref (t) & Esam (t)

Complex amplitudes

Eref ((‘)) & Esam ((‘))

M = |1/T(a))| exp {—i[Ad)(a))] — %d}

471(w) exp {—i[ﬁ(w) —1] %d}
> — 112
% exp {—iZﬁ(w) % d}

T (w) : power transmittance
A¢(w): intrinsic phase shift

d : sample thickness

c : speed of light in vacuum
fi(w) : complex refractive index

i(w) = n(w) + ik(w)

12



Time-Domain Spectroscopy (THz-TDS)

Time-Domain Spectroscopy (THz-TDS):
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Drude-Lorentz model

Dielectric function §(w) = ¢, (w) + i .

Terahertz spectrum : n-type GaAs thin film

Optical conductivity 0 (w) = 07 (w) + ioy,(w)

Phonon contribution : £, (W) = €, + (&5 — €x) =
T

Ng?> =t
m* 1—wrt
N : electron density
T : scattering time
m”* : effective mass

o(w) =

n-type GaAs, 500 nm thick
N=1x10¥cm3

T=100fs

wro=8.0THz

m*=0.067 m,

2
Y10
o—w?—iwl

e b e
4 6 8 10

Frequency (THz)

J. Lloyd-Hughes & T.I. Jeon, J. Infrared Milli Terahertz Waves 33:871 (2012)

a (' em™)

450 s

400
350
300
250
200
150
100

SOF
OU

250
200E
150F
100F

505

-50F
'”.]U: PR —

2 4 6 8

Frequency (THz)

7=100fs

Ny
=
L |

I 2 3
Frequency (THz)



Terahertz emission spectroscopy



THz emission : Mechanisms
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J. Pettine et al. Light: Science & Applications 12, 133 (2023) 16



Terahertz Emission : Photocurrent

Macroscopically, the photocurrent J; generated by the electric
field E of incident light is shown as follows

(T _\* 1 * * *
Jr= Z VAML(E xE ) + _Z XA;LU(E;LEU + EUEﬂ) + z T/l&,uvq8E,uEv
u 24w Spv

Yau : 2™ rank pseudo-tensor for the CPGE
Xauv : 3™ rank tensor for the LPGE

Thsuw : 4™ rank tensor for the PDE.

qs : photon linear momentum

CPGE LPGE PDE
Circular injection ‘ Photon drag
current effect
M photon _ . <in2a + L, - sin4a + L, - cos4a + D *N‘NW"'\//
=~ *

a
d Qwp
o+ :

RCZP +6 : incident angle

a : phase angle of QWP

C : Circular PhotoGalvanic Effect (CPGE) = Helicity-dependent
L, : Linaer PhotoGalvanic Effect (LPGE) = Helicity-independent
L, : Photon Drag Effect (PDE) = Helicity-independent

0

D : thermoelectric > Helicity-independent A. Junck, Ph.D. thesis, Freie Universitat Berlin, 2015.
P. Olbrich, Phys. Rev. Lett. (2014).
S. D. Ganichev and W. Prettl, J. Phys. Condens. Matter (2003):



MoS,/WS, heterostructure: Interfacial current

MoS,/WS, Heterostructure: Interfacial current
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Electric Field (a.u)

Graphene-THz Emission: Photon drag effect
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J. Maysonnave et al, Nano letters 14, 5797 (2014).
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Briefly introduction to 3D Topological insulators (Tls)

real-space k-space

Strong spin-orbit coupling
Band inversion

C. Jozwiak et al, PRB 84, 165113 (2011)
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20
H. Zhang et al, Nature Physics 5, 438 (2009)



Tl Bi,Se; : Manipulation of helicity-dependent photocurrent

A =795 nm, 80 fs
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Tl Bi,Se;: Ultrafast photocurrent spectroscopy

A =780 nm, <
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C. Kastl et al, Nature Comms. 6, 6617 (2015).
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MBE-growth Tl Sb,Te; thin film

p-type Sb,Te; thin film
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Tl Sb,Te, : Polarization control of helicity-dependent THz radiation@¢ = 0
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—x*— Abs of Peak-to-Peak value

Tl Sb,Te,: THz Radiation Time-Domain analysis @ ¢ =0
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Sb,Te;: circularly-polarized time-resolved ARPES

Intensity (arb. units)
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Circularly-polarized time-resolved ARPES: THz spectra estimation
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Tls Spin-polarized photocurrents

Helicity-dependent Time-Resolved Kerr-Rotation
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R. Mondal et al, Sci. Rep. 8, 3908 (2018).

AB: Kerr-rotation signal,
polarization-variation of optical pulses
M: Transient magnetization

«  k: wave vector of linear-polarized

optical pulses
* x: magneto-optical susceptibility
n: refractive index of materials
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Circular PhotoGalvanic Effect : WSe,

2DEG with Rashba spin splitting
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Rashba-type polar semiconductor BiTeBr

Rashba-type polar semiconductor BiTeBr
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Introduction : Classifications of Topological Materials

Topological insulator (TI)
2D conducting topological surface states (TSSs)

a
-l
i i
—
— chl pomts
AL
: H - 0 - -...
WSM ]
VY
Band inversion DSM P 3
b I
_ : > Dirac point
C=0 C=1

Dirac Semimetal (DSM)
Weyl Semimetal (WSM)
- 3D analog of graphene

B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. 8 337 (2017)

DSM > WSM
Inversion Symmetry Breaking or
Time-Reversal Symmetry Breaking

T Dirac semimetal Ordinary insulator Weyl semimetal

A AT A
aldchn

Breaking of space-inversion or time-reversal symmetry

M. Kanagaraj et al, Reviews in Physics 8 (2022) 100072

WSMs hosts Fermi arcs
on the Fermi surface of

Mh the surface band
structure.

+ Fermiarc —



Topological materials: Helicity-dependent THz emission

Topological Insulator Sb,Te, Weyl Semimetal TaAs Transverse CPGE
K I K
a Waveplate IR pump pluse b 14 F
(Adori2)
S02 TaAs r‘?—'
g 7
>-04 Ji Z
% Rotation angle =
506 ~~ (gorg) a9
2aos i B8 ™w. El
= x4  Ppluse &
- ! = = =
THz Iz Eyab Polarizer 2
. "/ i 3 i 4 waveplate ()
€mission 04 -02 00 _2 0.4 . B, L .
k, (A7) —1 0 1 2
ZnTe t(ps)
—a= 45 () —a= 00 — =135 O Y. Gao, et al, Nat. Comms. 11, 720 (2020).
e ) ]
i e 6=+ Weyl Semimetal CoSi/RhSi
: e
3 -~ CoSi RhSi
2 - 2 b o Jge e e 1 e
< N e 2 ]
M - T F F T ' | T T ] —
E_ﬁul.l..l..l.l.l Lo @ o b o @ 4§ o0 4 0 o1 2k ‘ : E LEft
0123465€67 012345867 v . -1 — Right ;
Time Delay (ps) Time Delay (ps) ER . 7
. S 40 : 2 s LY \ =
sin2a |3 © [g #=-40° O t=306ps [h #=+1° O t=306ps 3 | \\-. / o 1
s 20 [ =i} . I- —Fit ° ° [ (. =
] ' - ' 7 =
2 FO O 4, O o | os50eV| [ | <4
= 0 : v W
E e S 0 £ o
< .20 F o - i L
] [ ] ] 2k 1 1 1 4
E 40 v 3 | S 1 [ ' . . :I [ 0 45 90 135 180 225 270 315 360 —2 _'1 (I:I i i é ‘i
0 60 120 180 240 300 360 0 60 120 180 240 300 36( a 80) Time (ps)

QWP angle a (Degree) QWP angle « (Degree)
C. M. Tu et al, PRB 96, 195407 (2017). Z. Ni et al. Nat. Comms., 12, 154 (2021) R. Rees et.al, Sci. Adv., 6, eaba0509 (2020).



Light-induced topological phase transition: ZrTe.-Dirac semimetal-Weyl semimetal

ZrTe;-Light-induced DSM-WSM (Zirconium pentatelluride: HEE EEE)

IS breaking C€-aXis

shift current A
sample

1.57 eV pump

a-axis
CPGE
Polarizer
THz emission, E ;
8
Q
DSM THz detector, Eq,,, w”
<
centrosymmetry
Equilibrium Dirac semimetal Transient Weyl semimetal
Symmetry-breaking ‘twisted'

=== Residual oscillations (x5)

e 1 1 |
5 10 15 20
Pump—probe time delay (ps)

7Te, coherent phonons

Te,

v
Te
Te
C|rcu|ar|y
olarized
poptlcal THz pulse
ﬁ j excitation ¢ y] g

c

WSM
Broken Inversion Symmetry (IS)
Broken Time-Reversal Symmetry (TRS)

=| | ) .
: 0 5 10 : _ :
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- Emmed
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L. Luo et al,. Nature Mat. 20, 329 (2021)
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Light-induced topological phase transition: ZrTe.-Dirac semimetal-Weyl semimetal
ZrTe;-Light-induced DSM-WSM (Zirconium pentatelluride: HEE EEE)
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Nobel Prize in Physics 2018: Chirped Pulse Amplification

Extreme Light Infrastructure (ELI)
is a European project with three
sites that will be completed in a
Several methods were few years.
developed for emitting
extremely powerful short :
laser pulses, but then i.o
1054 development stopped - it F)
was not possible to amplify ELI
the light pulses further
without damaging the
amplifying material.

10"

|
R
\d

Focused intensity {W/cm2)

10

CPA

The world's first functioning
... laser was built by the American
© physicist Theadore Maiman.

T T T T T T T
1960 1970 1980 1990 2000 2010 2020 2030

1 i Zdh Yo |
Arthur Ashkin Gérard Mourou Donna Strickland

10"

1. Short light pulse 4. The pulse is compressed

from a laser and its intensity increases
| 2. The pulse is stretched, 3. The stretched dramatically.

which reduces its peak pulse is amplified.
power.

Grating pair,

Grating pair, Amplifier
pulse compressor

pulse stretcher

36

P TR A —— .



Table-top, Laser-based, Intense THz source: Tilted Pulse Front in LiNbO,

Nonlinear optical materials for THz generation

Material ety Mg n Az | for .'.ngnmm

[pm/V] | @ 800 nm (1.55 um) | ™ | [em] Y
CdTe 81.8 (2.81) 324 | 438 11.0
GaAs 65.6 4,18 (3.56) 359 | 05 421
GaP 248 3.67(3.16) 334 | 02 0.72
ZnTe 68.5 3.13(2.81) 3.17 13 7.27
GaSe 28.0 3.13(2.82) 3.27 | 05 1.18
SLiNbO3 @ 300K 168 2.25(2.18) 4.96 17 18.2
@ 100 K 4.8 48.6

Nonlinear optical materials for THz generation

For common LiNbO3, v, > v(Q),

phase-mismatching

* Cherenkov radiation
* Low efficiency
* Not plane wave = Bad for

applications

pump

-

-
-
-

~e
e
~

-
-
-

Sa
e,
.
~

Tilted Pulse Front in LiNbO3

Tilted Pulse Front

N
\
Y % THz
SLN \
N

Prof. Dr. Janos Hebling
Esiii Department of Experimental Physics,
University of Pécs
A2
Phonon-polariton dispersion of LN
HE \ - polariton dispersion

Grating o

Pump
Laser

-
¥ -
-
-
-

1 ' L
15000 20000 25000

kiem')

s s
0 5000 10000

For ~ mlJ, ~ 100 fs, 800 nm pulses,=>~ ul, ~100 kV/cm THz E-field.
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Table-top, Laser-based, Intense THz source: organic crystals

PNPA, DAST & OH1: ~ 1200 to 1550 nm BNA: ~ 800 nm

-
1500 ’\

_“'

TERAHERTZ

INNOVATIONS

600 1 2w
£ 1000 \/ T 2w
S S 400+ <
= I | k. = z
< < 200 &
PNPA i o
2 0] B NA @ Fr:quency {'FHZ]
2 S}
PN PA. = 'Y o;
Pumping wavelengths ~ 5 =58 B
1200 2100 nm, optimal & 1000 f iz "2001 ——BNA-Sapphire
OH1
e OH1
wavelength of 1550 nm. i 400+ —DAST
0 1 2 L 'l L 'l Il
Time (ps) 1 2 3 4 5
Time (ps)
250 T v
5004 o - 4
o i 1
DAST s siok m :
= § '
E g 400 i
< s |
B g : -
. © Thin BNA- 1
E‘ E 200 f u IE‘RE;Z ; 1
: N 3 e :
W oo “ Bare ave LIDT 1
smm = =BNA-S ave LIDT 1
& i i 1
OH1 0 1 2 3 4 5 6 UD 5 10 15

Frequency (THz)
http://www.eachwave.com/Product/7304151453.html

Fluence {mJ/cm?)
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Linear vs. Nonlinear THz spectroscopy

40 T 1 I I I I I T 1 | I

— B8QL
a5 7GL QWS o Phonon

< _
Linear THz spectroscopy “%so_ sqL l ]
— 4QL
E...x = 100 V/cm, plJ pulse energy 8 zzjzggt ]
. . . ]

THz probe, THz Time domain Spectroscopy of materials. S st .

S 10+ -

i(; 5L __‘______/—._'_-_

g old/]/m/M T

. 01234567 8 9101
Nonlinear THz spectroscopy Photon energy (meV)

E =~ 100 kV/cm, w pulse energy Conductance of Tls thin film by THz TDS.

maXx

THz pump—THz / optical / X-ray / etc. probe measurements of dynamics

For a 1 pJ, half-cycle THz pulse, focused into a volume of 1 mm3 or less.
E-field = [2D/g, ]2 ~ 100 kV/cm.

- Use large electric field to displace atoms in polar solids

(structural phase transitions, soft modes, ...)

H-field =E/c~0.03 T
- Use transient magnetic field to create magnetic/spin excitations

J. A. Flilop, “Intense Pulsed Terahertz Sources & their Applications”, International Research School IMPACT 2016 39



Intense THz applications: Scientific cases

Controlling lattice vibrations:

Intense THz E-field drive the phonon soft-mode of SrTiO,

o

= Quartic
_ 601 .. Quadratic
.‘E | approx.
— = \
aod\
g |
N & |
= g . [\\ /
g _E'" 201 ':"\._ /
o £ RN 4
£ £l Nl
o &
o gy
i =2 -1 0 1 2
‘g Displacement, Q (pm)
g ¢ o
W 5
| I Y A 4
= ¥
g« @ A 2 8 £ 2
Time (ps) g g 2
= 5
2 B0
g, o
z —10kV em! —10kV em!
i — B8O kV cm'! 4 —80kVcm™
-2 -1 0 1 2 3 0.0 1.0 20 30
Time {ps) Frequency (THz)

The unit cell of SrTiO; and the arrows represent the direction of the soft-
mode motion pf optical phonon.

THz transmittance spectrum of a SrTiOj, thin film shows a blue-shit of the
resonance frequency and it indicates the soft-mode becomes
stiffer/harder.

I. Katayama et al, PRL 108, 907401 (2012).

Spin wave control in antiferromagnets:

Intense THz B-field excited the magnon mode of NiO.

An Intense THz pulse excites

magnon coherently in NiO, and
a following near-infrared pulse
probes the magnetic dynamics
by the mean of Faraday effect.

o

field, 8(T)

Magnetic

Faraday rotation, 6, (mrad)

(EX4]

Ot——n
\

B:~0.13T
E: 400 kV/cm

Frequency {THz)
o | 2 3

p— : JL

JL
T T 7

T T T
4] 5 20 4040 &0

T. Kampfrath et al, Nat. Photon. 5, 31 (2011). Delay time, t (ps)
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Intense THz applications: THz E-field driven Phonon upconversion

Nonlinear Phonon response: Intense THz E-field driven the phonon upconversion of SrTiO,

R

ETHZ~880 kV/cm

_—y
[=]

— X-ray diffraction
Terahertz electrc field 4 0.5

Alf

Monlinear coupling

TQ,
/—-_\‘L mo-de silent

0.5

=]
(,_wo AW) play ouioa|3

sort L
maode mode '
% 1 I Il i _ﬂ_ﬂ
£ Temperature 0 2 4 & g 10
E. tuning | Time delay (ps)
< <> ¥ b . r
| | | =2 1 =i
- I
. B W ! ;
| g s I 1
4 F - " > En £ : :
8 TS5 I 1
E £ I 1
Flequency {THz} E a I 1
T I 1
I 1
b P _
0 2 4 6 8 10
Teraheriz pump X-ray Freguency (THz)
pulse detector
2-23) * XRD time-domain traces follow the THz E-field waveforms
flecti i i
Hard Xeray reflection * Higher frequencies of phonon modes are observed.

probe pulse (30 fs) -> Phonon upconversion

M. Kozina et al, Nat. Phys. 15, 387 (2019).



Intense THz Time-resolved ARPES: Tl Bi,Te,

LETTER

https://doi.org/10.1038/541586-018-0544-x

Subcycle observation of lightwave-driven Dirac
currents in a topological surface band Reg Amp: Ac = 807 nm, 5.5 mJ, 33 fs @ 3 kHz

J. Reimann', 8. Schlauderer?, C. P. Schmid®, F. Langer?, S. Baierl’, K. A. Kokh**, O. E. Tereshchenko®*, A. Kimura®, C. Lange?,
J. Glidde!, U. Hisfer'* & R. Huber*

THz excitation:
s-wave: Fermi surface shift, accelerating Dirac Fermion
p-wave = energy shift A ouk

and/or momentum shift Akgireuk

Dirac cone:
Topological Surface States

p-wave THz

THz “carrier-wave” driven Dirac current: ballistic

Exj transport
st i i i
c-wave THz 15t observation of electron current driven by EM carrier
z: [00D1) wave.

y: [2110]

- [0710

il Bi,Te,

s-polarized p-polarized
THz excitation THz excitation

42
J. Reimann et al, Nature 562, 396 (2018)



Spectrum
integration

£=cg(aY)

Normalized intensity

(%]

THz Time-resolved ARPES spectra of Tl Bi,Te;: s-polarized THz excitation
T=80K
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Accelerator-based Intense THz sources

Coherent Transition Radiation: CTR Coherent Undulator Radiation : CUR

Backward TR

Angular spectral density (J-sisr)
L

& Forward TR “704
Spectral angular distribution of the emitted TR Radiation wavelength
22 cin2 A K?
aw _ e“f*“ sin“ 0 }\:_uz(1+_+y292)
dwdQ m2c(1-p2 sin? 6)2 2y 2

6 is the emission angle with respect to the electron beam axis. )
Ay: undulator period

*  Transition radiation (TR) is emitted when a charged particle passes
through the boundary of two media with different dielectric ~
constant. Forward TR and backward TR occur simultaneously. K =0.9337B [T] Ay [cm]

* The radiation intensity increases from zero in the forward direction
to a broad peak at an angle 6 ~ 1/,.

K: undulator strength

Ref: C.S. Thongbai and T. Vilaithong, Nucl. Instr. And Meth. A. 581 (26%)7) 874



Intense CTR THz source @ SPARC_Lab

SPARC_Lab:
Coherent Transition Radiation THz source

E;,, > 1 MVem?, 0.5 -5 THz @ ~ 10 Hz
TABLE I. SPARC-LAB THz source performance: radiation parameters.

Single bunch Four-bunches per train
Energy per pulse (uJ) >1 0.6 @ | THz
electron gun Peak power (MW) 100 3@ 1 THz
- Average power (W) 1.8 1074 61070
accetlerating‘ Electric field (kV/cm) =100 =10
sections ¢ Pulse duration (fs) <200 <100
focusing Bandwidth (%) . <25
magnets
bending magnet {a) =20
u RF deflector and Side view é
FEL undulators <~ | diagnostic section 3
_-w' 2 l CTR ? 104
radiator ]
to beam CTR T
* . @ _\""‘-\—\.,_\_\_
dump . +* THz o i | Y
SOU.T'CC‘ \ ., 'T o 00 2 4 6
i Hé electron beam (b) Frequency (THz) 2.7 mm

vacuum pipe

FIG. 1. SPARC schematic layout with the THz source placed at the end of
the by-pass line.

Wi £

. . . . 0.5 THz 1THz 3TH:z 5 THz 45
https://sparclab.Inf.infn.it/sparc_lab-home/sparc-linac/thz-source-and-experiments/



THz Third Harmonic Generation-TI Bi,Se,

Intense CTR THz source (Broadband)

CTR THz beam profile
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F. Giorgianniv et al,. Nat. Commun. 7, 11421 (2016)
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NarrowBand THz source @ HZDR

TELBE :

Superconducting RF accelerator-based superradiant THz source
Eqy, = 12-85 kVem?, 0.1-1.2 THz @ ~ 100 kHz

F i.lndulétor'
10 e e e L o at 03 THZ
@ Measured pulse energy .
k=
=3 ©
: ™ <
3 S e e e s S B s s e
= = . 1 + } . 1 + + +
5 g1 COR source 1 HELMHOLTZ ZENTRUM
Z : ° DRESDEN ROSSENDORF
o u -—
=
©
o0
1 1 1 1 1 1 -1 I 1 1 1 I 1 L L L
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 5 10 15 20 25 30 35 40
Frequency (THz) Time (ps)
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NarrowBand THz High Harmonic Generation-Graphene

Graphene: Nonlinear THz Generation

a Incident Electron heating R .
guasi-monochromatic — and cooling:  —= e emitied
THz field E, ) nonlinear current jif] Ak hiald
Time-dependent conductivity '
AQ : heat accumulation
5(00,0) : ) ) « -
] 10)..
Ohm S Iaw Time-dependent SIOZ
. — conductivity a{AQ,f) —
] (t) - U(AQ' t) Ef (t) temporal current modulation
Temporal current modulation H=alieh
Nonlinear current b ..,
(1) —— Pump field
107 —_— H;rmponlcs e
g
.‘E‘l
THZ
Ennc (6) g
g
w
THz emission g
:
=}
Z

H. A. Hafez et al,. Nature. 561, 507 (2018)
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A. H. Castro Neto et al,.
Rev. Mod. Phys. 81, 109 (2009)
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NarrowBand THz High Harmonic Generation-Graphene

Graphene: Nonlinear THz Generation

Time-dependent conductivity
AQ : heat accumulation

a(AQ,t)

)

j(®) = a(AQ, t)Ef(t)
Temporal current modulation
Nonlinear current

1

EfiZ (6)

THz emission

H. A. Hafez et al,. Nature. 561, 507 (2018)
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NarrowBand THz HHG-Topological Materials

Topological Insulators: Bi,Te,

electric field, kV cm !

electric field, V cm !

amplitude, norm.

Binding Energy (eV)

[ Substrate
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frequency, THz

THz third-harmonic generation in Bi,Te,

S. Kovaley, et al. npj Quantum Materials 6, 84 (2021)
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High-harmonic generations in Cd,As,

S. Kovalev, et al,. Nat. Commun. 11, 2451 (2020)
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NarrowBand THz HHG-Topological Materials

Topological Insulators: Bi,Te,

electric field, kV cm !

electric field, V cm !

amplitude, norm.

THz third-harmonic generation in Bi,Te,

S. Kovaley, et al. npj Quantum Materials 6, 84 (2021)
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Coherent THz Sources at NSRRC

THz Signal vs. Electron Number Bunch length measurement Superradiant THz FEL spectru
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Photoinjector and coherent THz radiation sources
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Thank you for your attention!



