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Outline

⚫ Application of Insertion Devices (ID)

⚫ Introduction of ID

− Wiggler (增頻磁鐵) & Undulator (聚頻 
磁鐵)

− Development history

⚫ Spectrum features & calculation

− Photon Flux, Flux density, Brilliance 

− Photon Power, power density

⚫ Example of the ID spectrum

⚫ How to design and shimming ID 



Application of Insertion Device (ID)
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(1) Modulator or Radiator in FEL structure

(2) Main light source in storage ring (SR) structure

(3) Robinson wiggler to reduce emittance of SR

(4) Gradient damping wiggler to vary damping partition

number & momentum compaction factor of SR
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Introduction & history
• Insertion devices include the wigglers (增頻磁鐵) and undulators (聚頻磁鐵) that

are magnetic devices producing a specially periodic field variation.

• They are all placed in the straight sections of storage ring.

• Wiggler spectrum at higher photon energies is smooth, similar to that of a bending
magnet. The radiation intensity can be much higher as much as increased numbers
of poles and higher magnetic field generate radiation with a higher critical energy.

• When the use of periodic magnets in a regime in which interference effects is
coherent, and then the device is called “undulator”.

• The main radiation features of insertion devices are (1) higher photon energy, (2)
higher flux and brightness, (3) different polarization characteristics.

• The theory behind undulators was developed by Vitaly Ginzburg in the USSR.

• First undulator was installed in a linac at Stanford, using it to generate millimetre
wave radiation through to visible light in 1953.

• First wiggler (undulator) installed in storage ring at SSRL (BINP) around at 1979s.

• Superconducting wavelength shifter: are currently operating in several synchrotron
radiation facilities: ESRF, UVSOR, PF and CAMAD (USA), NSRRC begin early 1980.

• EPU (APPLEII) solve the experimental problem of circular polarization light at 1994.

• Superconducting wigglers: are currently used in MAXLab, NSRRC, Diamond, ALBA,...

• In-vacuum undulator: are popular used in the new 3th generation light source.

• Cryogenic permanent-magnet undulator: ESRF & SPring8, Diamond, Soleil, NSRRC.

• Superconducting Undulator: In developing in NSRRC, ANKA, BASSY II, APS.



➢ "Synchrotron Accelerator light source" is a continuous electromagnetic waves, 

covering infrared light, visible light, ultraviolet light, soft X-ray, hard X-

ray and other bands.

➢ In the mid-19th century, Maxwell organized the electromagnetic theory structure 
and established the electromagnetic wave theory (1865). Electromagnetic waves 
propagate at the speed of light, and "light" is a kind of electromagnetic wave.

Members of the electromagnetic wave family
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Out of vacuum planar undulator (U90)
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In-vacuum (IU) & cryogenic undulator (CU) 

IU @Room Temperature CU Below 77 K

➢The cooling method of CU is (1) liquid nitrogen cryogenic system or 

(2) the cryocooler.

➢ The cooling method will depend on numbers of CU.

T. Hara et al., “Insertion Devices of Next Generation”, Proceedings of APAC 2004 

真空內聚頻磁鐵



◆ 0.6 m long prototype testing

◆ 2 m long CU15 will be finished before June 2019

◆ 200 W CH-110 cryocooler at 77K

Cryogenic undulator (CU15)



Superconducting ID (SW60)－Enhances photon energy



Superconducting wavelength shifter
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Superconducting undulator (SU15)
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Produce Photon in various polarizations-Elliptically polarized Undulator

Superconducting EPU

EPU56



Staggered Undulator with magnetized Bulks

Staggered magnet array structure

➢ 10 Pole prototype structure without 

end pole optimization & using Field 

Cooling method.

➢ The magnet flux density will depend

on the trapped field of magnetized

bulks. 13



Positive (North) Pole

Negative (South) Pole

electrons enter the magnetic field

Electron group

synchrotron light source

U90 Undulator

Synchrotron accelerator light source- Insertion Devices

Halback structure arrays

一、Undulator: Focus light of the same frequency to increase the brightness of the light

二、Wiggler: Enhance more photon flux in higher frequency range 

三、Wavelength shifter: Increase the frequency of light to a higher energy region
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Different features in the insertion devices
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Basic features of the radiation from insertion devices

The synchrotron radiation emitted from (a) bending magnet, (b) wiggler, (c) undulator.

◆For the wiggler, the horizontal radiation cone become is k-1and the vertical cone is 

the same as that of the dipole magnet.

◆An electron beam traveling in a curved path (Bending magnet) at nearly the speed

of light emits photons into a narrow cone of natural emission angle  -1.

◆For the undulator, the radiation cone in horizontal and vertical are all closed to be -1. 

◆The synchrotron radiation emitted from an electron beam which was

bent in a spatially periodic sinusoidal field in an insertion device.

bending magnet wiggler undulator



Synchrotron Radiation from Insertion Devices
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Spectrum of bending and insertion devices
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Synchrotron Radiation from Insertion Devices
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Comparison of spectrum 

NSRRC



Field features of plan linear mode 

Insertion Devices

21y zx
Assume x-axis is infinite in plan undulator
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Spectrum features & calculation



Radiation from accelerator electron

◆ Spectral/angular distribution
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where ( ) cos,sinsin,cossinˆ =n is the unit vector from the point of emission

to the observer (see Figure). The observer and emission times are related by:

cRtt ret /. += where R is the distance between the emission and observer points,

and hence:

Geometry for the analysis of undulator radiation
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General radiation formula
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Radiation from bending & wiggler magnet
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In a wiggler, the deflection parameter K is large (typically K10) and photon 

radiation from different poles of the electron trajectory is enhanced incoherently. 

The angular density of flux is then given by 2N (N is the number of magnet periods) 

times the formula for bending magnets. The angular distribution of radiation 

emitted by electrons that are moving through a bending magnet, following a 

circular trajectory in a horizontal plane is,

Where  and c are the photon energy and the photon critical energy, 

respectively; θ and  are the observation angles in the horizontal and vertical 

directions, respectively; α is the fine-structure constant; I is the beam current; e is 

the electron charge; the subscripted K’s are modified Bessel functions of the 

second kind, and  is defined as
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c (keV) = 0.665E2(GeV)B(T)

Vertical polarizationHorizontal polarization



25

-mode

- mode

Radiation distribution on - mode



Photon spectrum from different electron energy
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c (keV) = 0.665E2(GeV)B(T)
( )

2
( ) (0) 1 /c c K   = −



Flux calculation of bending magnet and wiggler
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Therefore, the total flux F(w) of bending radiation is integrated over  . 

However, for the wiggler radiation, the total flux F(w) will be multiplied by 

a factor of 2N ( N is the period number).
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Function G1(y) and H2(y) of the synchrotron radiation
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Electron motion in the Insertion Devices

By = B0 sin(kz), where k = 2 / 0 and 0 is the insertion device period length.

where the dimensionless undulator or deflection parameter 

is defined as follows:
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We will only consider cases in which K/ <<1 and so we can write to a good approximation that

ctz = and tkz = where oc  /2= . We have electron angle then:
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First integral field Bds=0 (x’=0) & Second 

integral field (  Bds’)ds=0 (x=0)
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Photon Interference in undulator

In the time it takes the electron to move through one period length from point A to an

equivalent point B ( co  / ) the wavefront from A has advanced by a distance  /o

and hence is ahead of the radiation emitted at point B by a distance d where:
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od −=

and where θ is the angle of emission with respect to the electron beam axis. When this

distance is equal to an integral number, n, of radiation wavelength there is constructive

interference of the radiation from successive poles:
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Angular flux density from undulator-I

F function of Angular flux density in the horizontal (left) and vertical (right) 

planes for the case K = 1. 
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Angular flux density from undulator-2

On-axis angular flux density function

in practical units of photons/s/mrad2/0.1%

bandwidth:

If k 2 only n=1,3,5,7,9,11,13,15;

k 1 only n=1,3,5,7; k 0.5 only n=1,3

k 0.25 only n=1

32
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If n=1 -> Kmin=0.15; n=3 -> Kmin=0.5; 

n=5 -> Kmin=0.75; n=7 -> Kmin= 1; 

n=9 -> Kmin=1.2 ; n=11 -> Kmin=1.4

  ( )
2

2 20 2 2

0

[ / / / 0.1% ] 1.744 10 ( )
/

n b

d n
p s rad BW N E GeV F K I A

d d



 

=

= = 
 

  ( )
2

2 23 2 2

0

[ / / ] 1.744 10 ( )n b

d n
p s rad N E GeV F K I A

d



=

= = 


n=1,   3,    5,  7,  9, ……

 
 

( )

2

2
2 2 2

0.95

1
2

o

E GeV
keV n

K
   

 =
 
+ + + 

 



Total flux from undulator

◆ Total flux
We obtain the total flux in the central cone in practical units of flux is photons/s/0.1% bandwidth:
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where ( ) ( ) ( ) nKFKKQ nn /2/1 2+= . The flux function Qn(K) and the detuning function

( )( )0/ 1Nf . It can be seen that for zero detuning (i.e. ( )0n = ) the flux is very

close to half of the usually quoted result. Nearly twice as much flux can be

obtained however by a small detuning to lower frequency by approximately

( )1/ 0 1/ N   −

Qn(k): Undulator flux function 33

Undulator flux function as function of 

detuning



Radiation power from insertion devices

◆ Power and power density

    220.633tot o bP kW GeV B LIE= 

34

• Total power on ID

• Total power on Bending magnet

    220.633 2tot o bP kW GeV B LIE= 
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Definition of Radiation brilliance

◆ Brightness
We will obtain the brightness in practical units is photon/s/mm2/mrad2/0.1%

bandwidth. Photon flux unit is photon/s/0.1% bandwidth.

The diffraction-limited source size (rms) 

corresponding to the angular divergence of ID 
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 is the photon wavelength and u is the undulator periodic length. 
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Example of the characteristics 

of ID spectrum



Features of elliptically polarized undulator (EPU)
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Wavelength shifter (SWLS) with 6 T-example
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SWLS Power density calculation (total 5.96 kW)
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U100 field distribution- example
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U100 spectrum- example



U100 Integral multipole- example
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How to design and shimming ID
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Spectra calculation code

Advantages Disadvantages

SRW (ESFR):

*  User friendly package; *  Training course needed for familiarization;

*  Associated with slit for beam line design; *  Documentation is not clear;

*  Easy to do data process and data analysis; *  Large computer needed;

*  Calculation spectrum & power distribution; *  Program is not yet completed;

*  For simple field calculation; *  Some parameters are not included;

*  Fast calculation for FFT analysis spectrum * Can down load from ESRF website

*  Run in PC

Spectra (SPing8):

* User friendly package *  Training course needed for familiarization;

* Calculation spectrum & power distribution *  Large use of memory;

* Easy to put parameters and data process *  Documentation is not clear;

*  Taking into account different bata function *  Program is not yet completed;

*  Fast calculation *  Can down load from SPring8 website

*  Run in PC
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Magnet computation codes for magnet design

Advantages Disadvantages

TOSCA:

* Full three dimensional package; * Training course needed for familiarization;

* Accurate prediction of distribution and 

strength in 3D;

* Expensive to purchase;

* Extensive pre/post-processing; * Large computer needed.

* Multipole function and Fast calculation * Large use of memory.

*  For static & DC & AC field calculation

*  Run in PC or workstation

*  Cpu time is hours for non-linear 3D problem.

*  It can be run combined field

RADIA:

* Full three dimensional package * Larger computer needed

* Accurate prediction of distribution and 

strength in 3D

*  Large use of memory

*  Be careful to make segmentation

* With quick-time to view and rotate 3D 

structure

* Only DC field calculation

* Easy to build model with mathematic

*  Easy to perform data analysis and data plot

*  Run in PC

* Can down load from ESRF website



Magnet circuit type
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Hybrid structure

Pure structure



Peak field calculation on pure and hybrid magnet
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⚫ Pure structure magnet array

⚫ Hybrid structure magnet array

➢ samarium-cobalt magnet

➢ Neodymium-iron boron magnet
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Design criteria of IDs

◆ Wedged-poles were shaped with a thicker
cross section at pole tip.

◆ Chamfers are used to reduce local saturation
and demagnetizing field

◆ Vertical recess to minimize on-axis field
strength variation.

◆ Magnet overhang reduces 3-D leakage flux
and roll-off is slower.

◆ Different thickness of magnet block sizes
with partial strength on the both end poles.

◆ 0.5 mm thickness shim at magnet edge
increase vertical field roll-off.

◆ Two rows of trim magnets for By and Bx

multipole field shimming.

◆ Magnet & iron shim pieces for trajectory and
spectrum phase shimming.

◆ Longitudinal distance between each end pole,
the pole height, and pole tilt can be
adjustable.
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End pole design-I

Sequence of magnet poles (dotted

line) resulting in no offset between the

electron trajectory (solid line) and the

magnet axis.

Various end-sequences for the pure-

permanent magnet structure
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The criteria of ID design:

1. First integral field Bds=0

2. Second integral field (  Bds’)ds=0
J. Chavanne, C. Penel and P. Elleaume, Synchrotron Radiation News, 22, No. 

4, 34 (2009).



End pole design-II

Reduce integral field strength with gap

Reduce integral field strength with gap and phase

(A)

(B)

(C)

52
J. Chavanne, C. Penel and P. Elleaume, Synchrotron Radiation News, 22, No. 

4, 34 (2009).



Apple II End pole design

Reduce integral field strength with gap and phase

& the second field integral

The magnets of type HL, W and HW have the

same cross-section but a different longitudinal

dimension. The air gap is 5 mm (2 mm)

between the HL and W ( W and HW) magnet

blocks.
53

J. Chavanne, C. Penel and P. Elleaume, Synchrotron Radiation News, 22, No. 

4, 34 (2009).



Phase error calculation for shimming methods

( )
'

z
z x dz

= −










2

2 22

2

 

where x= dx/dz represents the electron angle with respect to the undulator z-axis, 

 is the photon radiation fundamental wavelength, and  denotes the relativistic 

velocity. In the ideal undulator device, the phase at each pole should be a perfect 

linear variation and the phase error is zero.

However for a real undulator, the phase error  is not zero and can be 

obtained by subtracting the two optimum linear fits of the real and ideal field

I I e
n rms= −

0
2( )

Where I and I0 represent the spectrum flux intensities with and without phase error. 
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Dynamic aperture shimming methods on EPU

( ) ( )( )x y n n
n

n n
B i B dz b i a x iy+  + +

−



=0

.

Where an and bn denote the integral 

normal and skew components. 

The shimming method has been studied to re-enlarge the dynamic aperture with

the addition of a multipole field component. Such shims are placed on each of

the four magnet arrays. They are designed based on the criteria of correcting the

tune shift vs. x.
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(Method 1):

(Method 2):
Using multi filament flat wire on the surface of the EPU vacuum chamber to compensate for the 

multipole error which is induced from dynamic integral field. 
J. Chavanne, et al., “Recent achievements and future prospect of ID activities 

at the ESRF”,  EPAC2000, 2346 (2000).



Multipole & spectrum shimming method

⚫ Measuring the individual permanent magnet block and then arranging

them by sorting block in the structure.

⚫ Measuring the integral field strength of each block which on the keeper to

reduce the mechanical error.

⚫ Swapping blocks after assembly and field measurement.

⚫ Using the thin iron pieces or permanent magnet pieces on magnet to

correct the multipole and spectrum shimming.

Method of magnetic shimming to improve the magnetic field quality

Multipole shim Spectrum shimMultipole shim Spectrum shim

Permanent magnet Hybrid magnet

56
J. Chavanne, et al., “Recent achievements and future prospect of ID activities 

at the ESRF”,  EPAC2000, 2346 (2000).



Field quality control by various methods

( ) ( )( )x y n n
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.
Where an and bn denote the integral 

normal and skew components. 
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Magic finger
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