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@ Modulators and Radiators for Seeded FEL
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@ Application of Insertion Devices (ID)

® Introduction of ID

— Wiggler (3¥#f#248) & Undulator (F 3

FéAB)
— Development history

® Spectrum features & calculation
— Photon Flux, Flux density, Brilliance
— Photon Power, power density

@ Example of the ID spectrum
® How to design and shimming ID



Application of Insertion Device (ID)
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@ Introduction & history

Insertion devices include the wigglers (3#E#45) and undulators (F#gi48) that
are magnetic devices producing a specially periodic field variation.

They are all placed in the straight sections of storage ring.

Wiggler spectrum at higher photon energies is smooth, similar to that of a bending
magnet. The radiation intensity can be much higher as much as increased numbers
of poles and higher magnetic field generate radiation with a higher critical energy.

When the use of periodic magnets in a regime in which interference effects is
coherent, and then the device is called “undulator”.

The main radiation features of insertion devices are (1) higher photon energy, (2)
higher flux and brightness, (3) different polarization characteristics.

The theory behind undulators was developed by Vitaly Ginzburg in the USSR.

First undulator was Installed in a linac at Stanford, using it to generate millimetre
wave radiation through to visible light in 1953.

First wiggler (undulator) installed in storage ring at SSRL (BINP) around at 1979s.

Superconducting wavelength shifter: are currently operating in several synchrotron
radiation facilities: ESRF, UVSOR, PF and CAMAD (USA), NSRRC begin early 1980.

EPU (APPLEII) solve the experimental problem of circular polarization light at 1994.
Superconducting wigglers: are currently used in MAXLab, NSRRC, Diamond, ALBA,...
In-vacuum undulator: are popular used in the new 3th generation light source.
Cryogenic permanent-magnet undulator: ESRF & SPring8, Diamond, Soleil, NSRRC.
Superconducting Undulator: In developing in NSRRC, ANKA, BASSY II, APS. 4



Members of the electromagnetic wave family

> In the mid-19th century, Maxwell organized the electromagnetic theory structure
and established the electromagnetic wave theory (1865). Electromagnetic waves
propagate at the speed of light, and "light" is a kind of electromagnetic wave.

» "Synchrotron Accelerator light source" is a continuous electromagnetic waves,
covering infrared light, visible light, ultraviolet light, soft X-ray, hard X-

ray and other bands.
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Out of vacuum planar undulator (U90)
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@ In-vacuum (IU) & cryogenic undulator (CU)
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» The cooling method of CU is (1) liquid nitrogen cryogenic system or
(2) the cryocooler.
» The cooling method will depend on numbers of CU.

T. Hara et al., “Insertion Devices of Next Generation” , Proceedings of APAC 2004



€ 0.6 m long prototype testing
€ 2 m long CU15 will be finished before June 2019
4 200 W CH-110 cryocooler at 77K




@ Superconducting ID (SW60) - Enhances photon energy
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Superconducting wavelength shifter
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@ Superconducting undulator (SU15)
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" Produce Photon in various polarizations-Elliptically polarized Undulator
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Staggered Undulator with magnetized Bulks

Staggered magnet array structure
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,@/ Synchrotron accelerator light source- Insertion Devices

7

— ~ Undulator: Focus light of the same frequency to increase the brightness of the light
= ~ Wiggler: Enhance more photon flux in higher frequency range
» Wavelength shifter: Increase the frequency of light to a higher energy region

In
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Different features in the insertion devices

Type Electron Orbit Electromagnetic field Spectrum
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4@/ Basic features of the radiation from insertion devices
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The synchrotron radiation emitted from (a) bending magnet, (b) wiggler, (c) undulator.

€ The synchrotron radiation emitted from an electron beam which was
bent in a spatially periodic sinusoidal field in an insertion device.

€ An electron beam traveling in a curved path (Bending magnet) at nearly the speed
of light emits photons into a narrow cone of natural emission angle = y-1,

@ For the wiggler, the horizontal radiation cone become is kytand the vertical cone is
the same as that of the dipole magnet.

@ For the undulator, the radiation cone in horizontal and vertical are all closed to be y.
16



Synchrotron Radiation from Insertion Devices
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@ Spectrum of bending and insertion devices
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Synchrotron Radiation from Insertion Devices

Spatial flux density
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@ Comparison of spectrum
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@ Field features of plan linear mode
< Insertion Devices

B},(:) — B{] COS ffP: this is what we want

Maxwell tells us what we can get! By (y.2) = By D(y)coshkyz

VxB=0 = Z== 0 = _Byb(y)k, sink,:

and B, = —Bob(y)(l — coskpz)

V:B= 8B cb(y)

s oo = B cosky:

form iﬁi = 2 kyb(y) €= b(y) = a1 coshkpy + ay sinhkyy
yer &)

B, =0
By = By coshkpy coskp:z
B. = —Bg sinhkpy sikp:

I sdes y 2 21
’\I/’Assume X-axis Is infinite in plan undulator



Spectrum features & calculation

22



@ Radiation from accelerator electron

€ Spectral/angular distribution

421 c | » 2 _ e fz/\{(ﬁ—ﬂ)/\[}}
A I )

where h= (sin 6 cos ¢,sin @sin ¢, cos 9) is the unit vector from the point of emission
to the observer (see Figure). The observer and emission times are related by:

t=t. +R/C where R is the distance between the emission and observer points,
and hence:

2

del _ e’ Tﬁ/\{(ﬁ_ﬂ)/\ﬂ}eia)(t—ﬁ-r/c)dt
dwdQ ~ (47e, Yz’c|?, (L-h-pB)

d’l _ e’y*N’
dedQ (47, )c

L(NAw/ w,(8))F.(K,8,9)

Geometry for the analysis of undulator radiation

General radiation formula .



@ Radiation from bending & wiggler magnet

In a wiggler, the deflection parameter K is large (typically K>10) and photon
radiation from different poles of the electron trajectory is enhanced incoherently.
The angular density of flux is then given by 2N (N is the number of magnet periods)
times the formula for bending magnets. The angular distribution of radiation
emitted by electrons that are moving through a bending magnet, following a

circular trajectory in a horizontal plane is,

Horizontal polarization Vertical polarization
c-mode - mode

d®B(w) _3ay” | Aw( & 2(1+ 2¢2)2 20+ L8 k2o
104 = 4;;2 v /4 2/3 1+7/2¢2 1/3

Where ¢ and ¢, are the photon energy and the photon critical energy,
respectively; € and ¢ are the observation angles in the horizontal and vertical
directions, respectively; a is the fine-structure constant; | is the beam current; e is
the electron charge; the subscripted K’s are modified Bessel functions of the

second kind, and £ is defined as ¢ (keV) = 0.665E2(GeV)B(T)
S :

3/2
&= (e12e0)(1+7°¢%) £ (0) = 2o O 1— (101 K )? 2




Radiation distribution on - mode




Photon spectrum from different electron energy
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@ Flux calculation of bending magnet and wiggler

d“F 6 A
Flux Density ﬂ[p/s/mrad] 1.327x10" 2 E2[GevITATH 2(y)
dodg w

Flux Density distribution integrated over ¢ is given by

d F(w) 16 AW
10 [p/s/mrad ]=2.457x10 WE [GeV]I[A]G1(y)\ |

d°F(w) d F(w) 1
d6d g 40 o, 27

Therefore, the total flux F(w) of bending radiation is integrated over 9
However, for the wiggler radiation, the total flux F(w) will be multiplied by
a factor of 2N ( N is the period number).

d F A
d;W) [p/s/mrad] = 2.457 x 10™° oW E 2N[GeV]I[AIGL(Y)
W

Finally, the power density or total power is flux density or total flux
multiply by photon energy, respectively.

At ¢ =0




@ Function G1(y) and H2(y) of the synchrotron radiation
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Electron motion In the Insertion Devices

B, = Bysin(kz), where k = 27/ 4, and 4, is the insertion device period length.

= 1—{— :B, ]| 7= i{, B_ | y
w - S N s
;o eB, coslkz) B.=ilc= EC{}S{FTZ] ke
m ok 4
-— Ao — S
where the dimensionless undulator or deflection parameter rz ﬁ 7] rN / l
is defined as follows: I I
K = ezBﬂ —0.934B,[T ]2, [cm] Bi+B; =B° (= constant)
zme L : ,
< K First integral field [Bds=0 (x’=0) & Second
B, = ﬂ(l— 0 47 2ij integral field J( | Bds’)ds=0 (x=0)
— K? 1 K?
i _axis i : = Bl 1- =1- -
The average velocity along the z-axis is thus: p=p 1,7 2,2 4y

We will only consider cases in which K/y <<1 and so we can write to a good approximation that

z=fct and kz=Qt where Q =2z8c/A,. We have electron angle then:

. K : : : : . Kc .
¥ = —ccos(Qt) which can be integrated directly to give e-trajectory: X = —asm(Qt)

4 4
K — K ¢ . . K? KA . K
X'=—cos(Qt), z=pct——->—sin(2Q), z= fc——-ccos(20t),/x=—L2L | (X =—
y (€2) / 4" 20 (201), 24 4y (201) v 2n 7| 20




IS Photon Interference in undulator
In the time it takes the electron to move through one period length from point A to an
equivalent point B (4, / 5c ) the wavefront from A has advanced by a distance 4,//
and hence is ahead of the radiation emitted at point B by a distance d where:

d :/1—_"—/10 cos &
P

and where 6 is the angle of emission with respect to the electron beam axis. When this
distance is equal to an integral number, n, of radiation wavelength there is constructive

interference of the radiation from successive poles:
A
—— /4,080 =nA

Inserting the expression for the average electron velocity: ol ¥
1 1 K? .
=z2l+—+-—

2y° 4y

results in the following interference condition: \/ WA \/

E?[GeV]

& [kev]=0.95n . c [evV]=
A, (1+K2+}/2 (62 +¢? )] Ay (m)

l(A):%[1+K72+7/2(02+¢2)j=1305.6 i 2
y
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Angular flux density from undulator-|
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Angular flux density from undulator-2

in practical units of photons/s/mrad?/0.1%
bandwidth:

If k <2 only n=1,3,5,7,9,11,13,15;
k <1 only n=1,3,5,7; k <0.5 only n=1,3
k <0.25 only n=1

If n=1 -> K,,,.=0.15; n=3 -> K, =0.5;
n=5 -> K, =0.75; n=7 -> K. = 1;
n=9 ->K, . =1.2;n=11->K_. =14
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@ Total flux from undulator

€ Total flux

We obtain the total flux in the central cone in practical units of flux is photons/s/0.1% bandwidth:

dn
do/w
where Q,(K)=(+K?/2)F,(K)/n. The flux function Q.(K) and the detuning function

B=BdQ= =1.431-10“NQ, (K) f (NA®w/ w, (0))1,

f(NAw/,(0)). It can be seen that for zero detuning (i.e. ® = w,(0)) the flux is very
close to half of the usually quoted result. Nearly twice as much flux can be
obtained however by a small detuning to lower frequency by approximately

— 1 L N
= 0.9] . 10 . : ,
0.81 o5
0.7} _ ~
0.6 : e s s 95_0.3 -
_E - B <
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0.4¢ P e = s
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Radiation power from insertion devices

€ Power and power density

d’n dP T
x E_=——|W/mrad?®|=10.84E*|GeV |B,NI,G(K)f (0,0 :.
d(()/(()dQ EP dQM ] [ ] 0 b ( ) K( y) osl
K(K® +2K* +4K? +1 2
where G(K)= (S +V +5) and x Y
(L+K?)? [ 0s
o wonys N
16K 7 . 1 40, —Kcosa : : , ol 2L
fK(ex,ey)=W(K)J;Slnza|:D3 - D5 :lda , as obtained by Kim. 0 02 04 us.ram-:a 10 1z 14
1.0
08
AO.B -
?50.4 -
02
« Total power on ID T - J

P, [KW]=0.633- E?[GeV | B.LI,

 Total power on Bending magnet
P, [kW]=0.633-E?[GeV ]| 2B’LI, 34



&  Definition of Radiation brilliance

€ Brightness

We will obtain the brightness in practical units is photon/s/mm?/mrad?/0.1%
bandwidth. Photon flux unit is photon/s/0.1% bandwidth.

2 2
Brilliance(f) = photon _ flux(B) Tew z\/(o'%j +[ﬁ)
Ar’c,o 050, GB% E NN, E

' 12 2 12
0= Jeb /B + 0B Jear. 1@ /B + o

2

o :\/8,8 +o
y y/=y ph I 12
Jy—JEy]/y+Jph

70y (8) = Wt () By (8). a, (5) = — 2 2Pus8) . (5) =3, ,(0)+

2

2 ds ’ ﬁx y(o)
, A
The diffraction-limited source size (rms) S p9pn = Az
" 1+ k/
corresponding to the angular divergence of ID o, =/1,/L = _1 N
y n
A is the photon wavelength and 4, IS the undulator periodic length.
c(y) 35

corresponding to the angular divergence of bending magnet a'ph(mr) =0.48 E(GeV)




Example of the characteristics
of ID spectrum
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Features of elliptically polarized undulator (EPU)
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Wavelength shifter (SWLS) with 6 T-example
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SWLS Power density calculation (total 5.96 kW)
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@ Field, first & second field integral of CU18

Cryogenic undulator (CU) " — — — — T -__'_ '
Period length: 18 mm, ol >
Period number: 170, |

Field strength: 1.23 T, 05
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Z

Y Spectra and power distribution of CU18
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U100 field distribution- example

B, = By sin(kz),
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Ix (Gauss-cm)

U100 Integral multipole- example
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How to design and shimming ID
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@ Spectra calculation code

Advantages Disadvantages
SRW (ESFR):
* User friendly package; * Training course needed for familiarization;
* Associated with slit for beam line design; * Documentation is not clear;
* Easy to do data process and data analysis; * Large computer needed;
* Calculation spectrum & power distribution; * Program is not yet completed;
* For simple field calculation; * Some parameters are not included,;
* Fast calculation for FFT analysis spectrum * Can down load from ESRF website
* RuninPC
Spectra (SPing8):

* User friendly package * Training course needed for familiarization;
* Calculation spectrum & power distribution * Large use of memory;
* Easy to put parameters and data process * Documentation is not clear;
* Taking into account different bata function * Program is not yet completed;
* Fast calculation * Can down load from SPring8 website
* RuninPC
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Magnet computation codes for magnet design

Advantages Disadvantages

TOSCA:
* Full three dimensional package; * Training course needed for familiarization;
* Accurate prediction of distribution and * Expensive to purchase;

strength in 3D;
* Extensive pre/post-processing; * Large computer needed.
* Multipole function and Fast calculation * Large use of memory.
* For static & DC & AC field calculation * Cpu time is hours for non-linear 3D problem.
* Run in PC or workstation * It can be run combined field
RADIA:
* Full three dimensional package * Larger computer needed
* Accurate prediction of distribution and * Large use of memory

strength in 3D * Be careful to make segmentation
* With quick-time to view and rotate 3D * Only DC field calculation
structure
* Easy to build model with mathematic
* Easy to perform data analysis and data plot * Can down load from ESRF website

| * RuninPC




+— — +— —>» +— — e- Source

Pure structure




Peak field calculation on pure and hybrid magnet

hybrid:
By = 3_44¢-:/A{s.u-x.u,/x.)]

® Pure structure magnet array

pure pm:

BO [T ] — 1895(6_%11) B,rr]: ‘:\/Bo = 1.895¢="9/Ae

0.5

o.5

® Hybrid structure magnet array

o o3 o.a O..
gap-to-period ratio g/\,

» samarium-cobalt magnet Attainable on-axis field in pure PM and hybrid
insertion devices (B, =1.1T, H,, =-0.8H,)

. 0
0.07<—=<0.7
B,[T]=333exp ——f [5.4?—1.8—f ] T

i i

» Neodymium-iron boron magnet
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Design criteria of IDs

Wedged-poles were shaped with a thicker
Cross section at pole tip.

Chamfers are used to reduce local saturation
and demagnetizing field

Vertical recess to minimize on-axis field
strength variation.

Magnet overhang reduces 3-D leakage flux
and roll-off is slower.

Different thickness of magnet block sizes
with partial strength on the both end poles.

0.5 mm thickness shim at magnet edge
increase vertical field roll-off.

Two rows of trim magnets for B, and B
multipole field shimming.

Magnet & iron shim pieces for trajectory and
spectrum phase shimming.

X

Longitudinal distance between each end pole,

the pole height, and pole tilt can be
adjustable.

Pole

4 overhang

Magnet

L1

Irecess

|

overhang

1, %\

]

Cll amfer
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Sequence of magnet poles (dotted Various end-sequences for the pure-
line) resulting in no offset between the permanent magnet structure

electron trajectory (solid line) and the

magnet axis.

The criteria of ID design:
1. First integral field [Bds=0
2' Second Integral fleld '[( ‘[ BdS,)dSZO J. Chavanne, C. Penel and P. Elleaume, Synchrotron Radiation News, 2|25,Jl;|o.

4, 34 (2009).
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dditional end H block

Reduce integral field strength with gap

blocks with tilted magnetization

Reduce integral field strength with gap and phase
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J. Chavanne, C. Penel and P. Elleaume, Synchrotron Radiation News, 22, No.

4, 34 (2009).

End pole design-li
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HW

The magnets of type HL, W and HW have the
same cross-section but a different longitudinal
dimension. The air gap is 5 mm (2 mm)
between the HL and W ( W and HW) magnet
blocks.
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J. Chavanne, C. Penel and P. Elleaume, Synchrotron Radiation News, 22, No.
4, 34 (2009).



Phase error calculation for shimming methods

2z 7z [x?dz

B(z)=
D=7 1523

where X = dx/dz represents the electron angle with respect to the undulator z-axis,
A is the photon radiation fundamental wavelength, and y denotes the relativistic

velocity. In the ideal undulator device, the phase at each pole should be a perfect
linear variation and the phase error is zero.

However for a real undulator, the phase error 4@ is not zero and can be
obtained by subtracting the two optimum linear fits of the real and ideal field

| =19 e_( NAGrms)?

Where | and |, represent the spectrum flux intensities with and without phase error. c4



J (Bx+i By)dz = gj(bn+ian)(x+iy)n.
—00 n=0

Where a, and b, denote the integral
normal and skew components.

The shimming method has been studied to re-enlarge the dynamic aperture with
the addition of a multipole field component. Such shims are placed on each of
the four magnet arrays. They are designed based on the criteria of correcting the
tune shift vs. x.

(Method 2):
Using multi filament flat wire on the surface of the EPU vacuum chamber to compensate for the
multipole error which is induced from dynamic integral field. 55

J. Chavanne, et al., “Recent achievements and future prospect of ID activities
at the ESRF”, EPAC2000, 2346 (2000).



Multipole & spectrum shimming method

® Measuring the individual permanent magnet block and then arranging

them by sorting block in the structure.

® Measuring the integral field strength of each block which on the keeper to
reduce the mechanical error.

®  Swapping blocks after assembly and field measurement.

® Using the thin iron pieces or permanent magnet pieces on magnet to

correct the multipole and spectrum shimming.

Multipole shim  Spectrum shim Multipole shim  Spectrum shim

1
ENENENENENEWD N NN NN\
Permanent magnet Hybrid magnet

Method of magnetic shimming to improve the magnetic field quality 56

J. Chavanne, et al., “Recent achievements and future prospect of ID activities
at the ESRF”, EPAC2000, 2346 (2000).



Field quality control by various methods
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