FEL Summer School, NSRRC, July 15-19, 2024

Lecture 1 -Fundamentals of Free-electron Laser

Yen-Chieh Huang 黃衍介*

ychuang@ee.nthu.edu.tw, tel: 886-3-5162340, fax: 886-3-5162330

清華大學電機工程學系/光電研究所/物理系

Department of Electrical Engineering/Institute of Photonics Technologies/ *Department of Physics

National Tsinghua University, Hsinchu, Taiwan

Outlines

- Spontaneous emission Compton scattering/Thompson scattering/undulator radiation
- 2. Stimulated emission wave/particle energy exchange \rightarrow laser gain

3. Requirements for FEL Oscillator: buildup time, energy spread, emittance, saturation power, etc.

Parameters in Relativistic Mechanics

Lorentz factor $\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$

Moving particle

where $\beta \equiv v / c$, with *c* = speed of light in vacuum.

Electron mass $m = \gamma m_0$, m_0 = electron rest mass

Electron momentum: $p = mv = \gamma m_0 v$

Total electron energy: $\gamma m_0 c^2 = \sqrt{m_0^2 c^4 + p^2 c^2}$, $m_0 c^2$ = electron rest energy ~ 0.5 MeV

In laboratory frame: length L In electron frame: length $L/\gamma \leftarrow$ Lorentz contraction

In the relativistic regime $\beta \equiv v/c \sim < 1$

$$\gamma \equiv \frac{1}{\sqrt{1 - \beta^2}} >> 1 \Longrightarrow \frac{1}{\beta} \sim 1 + \frac{1}{2\gamma^2} \Longrightarrow \beta \sim 1 - \frac{1}{2\gamma^2}$$

Photon-electron Energy Exchange in Free Space

requirements: energy conversation & momentum conservation

Energy-momentum diagram of Compton Scattering

Photon-electron energy exchange is prohibited in a vacuum unless a third particle exists or is created

Thomson Back Scattering:

Compton scattering with electron energy loss much less than the photon energy

Longitudinal Lorentz factor
$$\gamma_z \equiv \frac{1}{\sqrt{1 - \beta_z^2}}$$

where $\beta_z \equiv v_z / c$

Spontaneous Undulator Radiation

For $\mathcal{A}_{_{\mathcal{W}}} \sim 1$ cm, 100 MeV(γ_z ~ 200), $\Rightarrow \lambda$ = 125 nm

"Cheap" long-wavelength virtual photon \Rightarrow expensive short-wavelength photon

Effect of Magnetic field on e⁻ Quiver Motion

A general assumption: a relativistic beam $\gamma >> 1$

Assume a planar/linear wiggler with a wiggler field of $\vec{B} = \hat{y}\sqrt{2B_{rms}} \sin k_w z$

Undulator Radiation Wavelength

Because

$$\gamma_z \equiv \frac{1}{\sqrt{1 - \beta_z^2}} = \frac{1}{\sqrt{1 - v_z^2 / c^2}}, \text{ and } \lambda \approx \frac{\lambda_w}{2\gamma_z^2}$$

$$\implies \frac{1}{\gamma_z^2} = \frac{1 + a_w^2}{\gamma^2} \text{ where } a_w = 0.0$$
 is called the

The
$$a_w = 0.093 B_{rms}$$
 (kgauss) $\times \lambda_w$ (cm)

s called the *wiggler/ undulaotor parameter*

$$\lambda = \frac{1 + a_w^2}{2\gamma^2} \lambda_w \quad \text{(FEL synchronism condition)}$$

Undulator radiation wavelength can be tuned by magnetic field *B*, wiggler period λ_w , and electron energy γ ¹³

 $g_{th}L_c$: 1-way threshold gain, $2\alpha L_c$: roundtrip loss, ϕ = roundtrip phase

(1) Threshold condition: gain = loss $g_{th} = 2\alpha$ (2) Phase condition: $\phi = 2m\pi^{-15}$

Electron-Wave Energy Exchange

 $\frac{dK}{dt} = e\vec{v} \cdot \vec{E} \qquad K: \text{ electron kinetic energy}$

Wave Amplification
$$\Delta W = \int \vec{F} \cdot \vec{v} dt = e \int_{\tau = L/v_{//}} \vec{E} \cdot \vec{v} dt < 0$$

Particle Acceleration
$$\Delta W = e \int_{\tau = L/v_{//}} \vec{E} \cdot \vec{v} dt > 0$$

Transverse Coupling (fast wave, Eg. Compton/Thomson/undulator radiation etc.)

$$\Delta W = e \int_{\tau = L/v_{//}} \vec{E}_{//} \cdot \vec{v}_{//} dt$$

 $\Delta W = e \int_{\tau = L/v_{\mu}} \vec{E}_{\perp} \cdot \vec{v}_{\perp} dt$

Resonant Interaction between Electron and Field

To have FEL gain $\Delta W = e \int_{\tau = L_w/v_z} \vec{E} \cdot \vec{v} dt < 0 \quad L_W \text{ is the length of the wiggler}$

For
$$E_x = E_0 \cos(\omega t - kv_z t + \phi)$$
 and $v_x = \frac{-\sqrt{2}c_0 a_w}{\gamma} \cos(k_w v_z t)$
 $\overrightarrow{E} \cdot \overrightarrow{v} \propto \cos\{[k - (k + k_w)\beta_z]ct + \phi\} + \cos\{[k - (k - k_w)\beta_z]ct + \phi\}$
 \overrightarrow{F} :pondermotive phase

whether $\vec{E} \cdot \vec{v} > 0$ (radiation) or $\vec{E} \cdot \vec{v} < 0$ (particle acceleration) depends on ϕ

To have appreciable value in

$$\int_{\tau=L_w/v_z} \vec{E} \cdot \vec{v}_z dt$$

 $k - (k + k_w)\beta_z = 0 \implies \lambda = \frac{1 + a_w^2}{2\nu^2}\lambda_w$ The FEL synchronism condition

$$k - (k - k_w)\beta_z = 0 \implies \beta_z \equiv v_z / c_0 > 1$$
 Impossible in vacuum 17

light slips one wavelength ahead per wiggler period

 $\lambda = \lambda_{w} \left(\frac{1}{\beta_{z}} - 1 \right) \approx \frac{\lambda_{w}}{2\gamma_{z}^{2}}$

Pendulum Equation

The pondermotive (beat) phase $\psi = (k + k_w)z - \omega t$

was previously found from the beam-wave energy coupling equation

$$\frac{dK}{dt} = ev_x E_x = \frac{ec_0 a_w E_0}{\sqrt{2\gamma}} \cos\left\{\omega t - (k + k_w)z(t) + \phi\right\}$$

Take first derivative of ψ with respect to z and use the FEL synchronism condition to obtain

$$\frac{d\psi}{dz} = 2k_{w}\frac{\gamma - \gamma_{r}}{\gamma_{r}} = 2k_{w}\frac{\Delta\gamma}{\gamma_{r}}$$

where γ_r is the resonant particle energy satisfying the synchronism condition

$$\lambda = \lambda_w \frac{1 + a_w^2}{2\gamma_r^2} \quad \text{or} \quad k_w = k \frac{1 + a_w^2}{2\gamma_r^2}$$

A second derivative to the beat phase with respect to *z* gives the

pendulum equation

$$\frac{d^2\psi}{dz^2} = -k_{\psi}^2 \sin\psi$$

where
$$k_{\psi}^2 = \left[\frac{e}{\gamma_r m_0 c_0}\right]^2 \frac{\sqrt{2}B_{rms}E_0}{c_0} \equiv \frac{2\pi}{L_{\psi}}$$

 L_{ψ} : synchrotron oscillation wavelength

For a small
$$\Psi$$
,

$$\frac{d^2\psi}{dz^2} \sim -k_{\psi}^2\psi$$

Particles oscillate, drift in the pondermotive phase .

Recall the harmonic oscillator equation

http://hyperphysics.phyastr.gsu.edu/hbase/oscda.html

With the definition of k_{w_i} , the *phase diagram* can be plot from

$$\frac{d\psi}{dz} = \pm \sqrt{2}k_{\psi}\sqrt{\cos\psi + 1} = 2k_{w}\frac{\Delta\gamma}{\gamma_{r}}$$

The bucket height = 4 k_{ψ} , and the maximum energy extraction occurs at half synchrotron wavelength: FEL length is $\sim L_{\psi}/2$

The maximum energy efficiency for an FEL =

FEL Gain
$$G = \frac{W_f - W_i}{W_i} = e^{gL_c}$$

To have gain

 $\Delta W = e \int_{\tau = L_w/v_z} \vec{E} \cdot \vec{v} \, dt < 0 \qquad L_W \text{ is the length of the wiggler}$

For
$$E_x = E_0 \cos(\omega t - kv_z t + \phi)$$
 and $v_x = \frac{-\sqrt{2ca_w}}{v} \cos(k_w v_z t)$

whether $\vec{E} \cdot \vec{v} > 0$ (radiation) or $\vec{E} \cdot \vec{v} < 0$ (particle acceleration) depends on ϕ

Energy Spread Requirement

Refer to the FEL gain curve, for an electron to contribute its energy to the FEL gain, the acceptance phase width has to be confined to 2π or

So, the energy spread of the electron beam for an FEL has to be less than $1/(2N_w)$

Emittance Requirement for an FEL

A Gaussian Laser Beam Rayleigh range $z_{o,R} = \frac{\pi W_0^2}{\lambda}$ Far-field diffraction angle = $\theta \sim \frac{W_0}{z_R}$

The phase space (angle and beam size) area is $\pi \Theta W_0 \sim \lambda$

An Electron Beam

The phase space area is the beam's geometric emittance ε

To place an electron beam Inside an optical beam

Therefore long-wavelength FEL is more forgiving to e-beam quality

FEL Gain Bandwidth

The spectral bandwidth is defined by the variation of the spectral ratio

within the half width of the gain curve

$$\Delta \Psi = \left| \Omega \tau = \left[\omega - (k + k_w) \overline{v}_z \right] \frac{L}{\overline{v}_z} \right| < \pi$$

From the FEL synchronism condition $\lambda = \lambda_w \frac{1 + a_w^2}{2\gamma^2}$, it is straightforward to show $\left| \frac{\Delta \lambda}{\lambda} \right| = 2 \left| \frac{\Delta \gamma}{\gamma} \right|$

However the maximum allowed $\Delta \gamma / \gamma < 1/(2N_w)$ is obtained from the full width. For a half width

$$\left|\frac{\Delta\lambda}{\lambda}\right| = 2\left|\frac{\Delta\gamma}{\gamma}\right| < 2 \times \frac{1}{2N_w} \times \frac{1}{2} = \frac{1}{2N_w}$$

Characteristics of a Free-electron Laser

- 1. Laser: a coherent light source
- 2. Wavelength tunable:

by varying the magnetic field and the electron energy

- 3. High peak power: GW-MW in 0.1~10 psec micropulse
- 4. High average power: kW in $> \sim \mu$ sec macropulse

General Requirements for Building an FEL Gain > loss

In particular i. Electron energy spread $\Delta \gamma / \gamma < 1/2 N_w$ ii. Electron emittance $\epsilon < \lambda$

FEL Summer School, NSRRC, July 15-19, 2024

FEL Fundamentals (PART II)

Design Example for an FEL Oscillator

Yen-Chieh Huang 黃衍介

ychuang@ee.nthu.edu.tw, tel: 886-3-5162340, fax: 886-3-5162330

清華大學電機工程學系/光電研究所/物理系 Department of Electrical Engineering/Institute of Photonics Technologies/ Department of Physics National Tsinghua University, Hsinchu, Taiwan

Outline

- **1. System Configuration**
- 2. RF Electron Gun
- 3. Wiggler
- 4. Laser Cavity
- **5. Radiation Measurement**
- 6. Perspectives

The Stanford \$300k, 3.5 THz Compact FIRFEL

The RF/FIRFEL System Configuration

RF System

End Station III, HEPL, Stanford University

The Stanford FIRFEL

Microwave electron gun

Geometric Emittance (4.2 π-mm-mrad for 90% particles)

Y. C. Huang PhD thesis

Superconducting Solenoid Wiggler

y. C. Huang PhD thesis

Y. C. Huang PhD thesis

J. F. Schmerge, J. Lewellen, Y.C. Huang, J. Feinstein, and R.H. Pantell, "The Free-electron Laser as Laboratory Instrument," IEEE J. Quantum Electronics, vol. 31, NO. 6, June 1995, pp. 1166-1171.

Power (mW)

Instrument," IEEE J. Quantum Electronics, vol. 31, NO. 6, June 1995, pp. 1166-1171.

Cost Breakdown

RF System:	\$14.4 k
Electron beam:	\$25 k
Vacuum System:	\$32 k
Power Supplies:	\$16 k
Optics:	\$12 k
Wiggler:	\$30 k
Superconducting Solenoid:	\$34 k
Miscellaneous (cable, wire):	\$5 k

Total:

\$298 k