

Lukas Stingelin :: RF-Systems 1 :: Paul Scherrer Institute

Operation and Upgrade of the SLS RF Systems

Ampegon User Workshop, April 2024

Facility overview: 5 independent 180 KW RF plants

Facility overview: Pulse Step Modulator

Series TSM6 power module 700V-DC, max 25 A. Switches: Insulate-Gate Bipolar Transistor (IGBT)

Replaced all electrolytic capacitors!

5 identical HV pws Globally 340 modules 4 module failure in first 4 Years! Each module supplied from a separated secondary winding of a multi secondary power transformer

Globally 68 modules - series connected

46 kV / 7.5 A

Efficiency: 96%

19"rack

Control System

Short circuit energy: <15J (no crowbar)

6000

Journal of Synchrotron Radiation, <u>Volume 19| Part 1| January 2012|</u> Pages 1-9 https://doi.org/10.1107/S0909049511041884

Fire- & Discharge protection for Klystron Supply Unit

Smoke-Detector \rightarrow Switches the klystron supply unit off and alarms the fire brigade

UV-Detector \rightarrow Switches the klystron supply unit off and alarms the control room

PAUL SCHERRER INSTITUT

Refurbishing and Efficiency of EEV 500MHz Klystron.

✓ First EEV Klystron sent to CPI for Refurbishing in 2009

✓ FAT in Palo Alto CA successful

I However, problems at PSI to reach maximum output power

- \rightarrow 2nd harmonic cavity had to be retuned
- I Efficiency not optimal

 \rightarrow Attempt to adjust matching with Iris

PSI, 12. April 2024

Coincident arc detection on the klystron and circulator

Motive for improvement:

- •Several arcs per month and RF plant
- •RF plant stop
- •Beam loss

Water Leaks at 500MHz Thales Klystrons

Leak was repaired by flame-brazing, unfortunately, several other leaks were found and had to be brazed as a brazed

PAUL SCHERRER INSTITUT

Problems with EEV 500MHz Klystron I

Second EEV Klystron sent to CPI for refurbishment. Big delay! Improvement of matching, resp. efficiency is expected

☑ Water leak at first refurbished klystron after 6 months of operation

⊠ Water leak at booster klystron

EEV Type K3418P Klystron

PAUL SCHERKER INSTITUT

Problems with EEV 500MHz Klystron II

EEV Type K3418P Klystron

 \boxtimes Fissures at frame of HV-box (\rightarrow temporary fix with bands and successive replacement by rewelded + reinforced frame)

Problems with «Pantak» Connector of 500MHz Klystrons

Bad contact at the tip \rightarrow re-soldered,

No contact at the «shield» \rightarrow Added copper disks

 \rightarrow later improved pins for higher current operation!

21/10/20

07.00.00

Issues with Mod. Anode Interlocks and Vacuum Pumps

HV-deck of EEV Klystron (cable was too close to the ring)

Connector of Klystron vacuum pump

- Arcing of modulation anode cable caused 5 hours downtime of booster RF-plant
- Vacuum problems, marks on IP-ceramic after high-potting
- Efficiency of refurbished klystron below specification
- Vacuum problems solved by high-potting on refurbished klystron

SLS 2.0 Upgrade Project Schedule Key Milestones: Version March 2024 ~ TDR 2021

SLS 2.0 Synchrotron Parameters

	SLS 2.0 (TDR)	SLS
Circumference [m]	288	288
Energy [GeV]	2.7	2.411
Natural emittance [pm.rad]	158	5700
Lattice and ID energy loss/turn [keV]	687.6 → 943	549→600
Energy loss/turn in wake fields [keV] w. (w.o) 3HC	7 (22)	
Energy spread	1.16·10 ⁻³	9.10-4
Momentum compaction α _c	1.05·10 ⁻⁴	7·10 ⁻⁴
Energy acceptance (without harmonic cavity)	6.2% → 5.1%	3%
Main RF frequency [MHz]	499.6537	499.6
Total main RF voltage nominal [kV]	1780	2080
Harmonic number	480	480
Gap in the filling pattern, empty buckets	20 30	5090
Damping times x/y/E [ms]	4.14/7.54/6.41	8.4/8.4/4.5
Longitudinal stability threshold per cavity [GHz k Ω]	6.2	
Horizontal stability threshold per cavity [MΩ/m]	3.3	40
Vertical stability threshold per cavity [MΩ/m]	4.4	
Beta functions at main cavity location β_x [m] / β_y [m]	9.6/7.0	1.5/1.1
Beta functions at harmonic cavity β_x [m] / β_y [m]	6.8/4.1	3.5/3.5
Synchrotron frequency without harmonic cavity [kHz]	2.172	6.93
Energy fluctuations relative to energy spread	<10%	

PAUL SCHERRER INSTITUT

New HOM damped cavities from Research Instruments (4+1 spare)

SLS 2.0 RF parameters

Main RF-System	SLS 2.0		SLS
Total voltage [kV]	1440	1780	2080
Energy acceptance (without	5% → 3.7%	6.3% →	3%
harmonic cavity)		5.2%	
Number of cavities	4		4
Voltage per cavity [kV]	360	445	520
Wall loss per cavity [kW]	20	30	40
Required RF-power with beam	88	98.1	95
and minimum ID Power [kW]			
Required RF-power with beam	114	124	100
and maximum ID Power [kW]			
Optimal coupling	4.626.0	3.44.3	2.5
Detuning for matching [kHz]	-49.157.1	-32.444.6	-33
HOM control	By strong HOM damping		Temp.
			detuning
Max. voltage for ≤150kW	460	540	
reflected pulse power [kV]			
(restriction from amplifier			
specification)			

Amplifier Spec: 150kW 4 SSAs ordered from Cryoelectra

More radiated X-ray power for users Less electricity consumption

 $\begin{array}{c} \text{SLS} \rightarrow \text{SLS2.0} \\ \text{E}_{e^-} & 2.4 \text{ GeV} \rightarrow 2.7 \text{ GeV} \\ \text{P}_{\text{SR}} & 310 \text{ kW} \rightarrow 365 \text{ kW} \\ \text{W}_{elec}/\text{y} & 24 \text{ GWh} \rightarrow 17 \text{ GWh} \\ \text{W}_{elec}^-\text{W}_{\text{PV}}/\text{y} & 17 \text{ GWh} \rightarrow 15.5 \text{ GWh} \end{array}$

Key savings:

Electromagnets \rightarrow permanent magnets **Klystrons** \rightarrow **solid state amplifiers** Standard pumps \rightarrow regulated pumps for cooling Tar paper roof \rightarrow PV cladded roof

Courtesy: SLS2 Project Management

SLS 2: Storage Ring Accelerating Stations

RF Power station layout implementation in straight X05

Status of RF-Installation Area

Storage Ring 500MHz-Systems:

Installation of platform, cooling, waveguide feedthroughs and shielding in progress.

Booster RF and Super-3HC Cryogenic-System:

Cabling ongoing, beginning of teststand operation from Mai 2024. Amplifiers need safety upgrade

PAUL SCHERRER INSTITUT

Safety Upgrade at Booster RF and Teststand KSU

- For new safety regulations, performance level PLe or PLd will be required when the amplifier is disabled by the personel safety system
- →Redundancy of the main contactors is required!
- Also, new test-mode and emergency-stop functionalities are required.

SLS Klystrons and Klystron Supplies Currently on Stock:

Wir schaffen Wissen – heute für morgen

