



### Neutron Detection Study from Beam test of Boron GEM detector

### Woojong Kim

Inkyu Park, Jason Sang Hun Lee, Hyupwoo Lee, Minjae Kwon, Donghyun Song, Myeonghun Choi University of Seoul

Asian Forum for Accelerators and Detectors, 18 Apr 2024 WG2: Detector technology development

### Motivation

- Neutron detectors are vital for sites requiring extensive neutron monitoring, such as fusion power plants. However, traditional neutron detectors are very expensive.
- This project aims to offer a cost-effective and scalable alternative to traditional neutron detector.
- The Gas Electron Multiplier (GEM) detector was selected for this purpose due to its suitability for large-scale implementation.

Our experiment is designed to evaluate the effectiveness of the Boron GEM in detecting neutrons.



Compact Muon Solenoid Gas Electron Multiplier Detector



International Thermonuclear Experimental Reactor

## **Gas Electron Multiplier**



- GEM foil
  - 50 µm polyimide film + 5 µm copper layer on each side
  - Many holes exist for electron amplification

Drift area

- The primary electrons are generated
- Accelerate the electrons sufficiently



- The strong electric field in micro-holes makes electron avalanches
- We use the GEM foil with micro pattern readout board and Ar/CO2 gas (70/30)

#### 2024-04-18

### **Neutron Capture Process**

 Almost all neutron interacts with B-10 • The initial signal is strong enough. After capture process Two GEM foils are used. • Li-7, Alpha and gamma occurred (mainly)  $alpha_{[E=1.47 MeV]}$  is easy to detected ЧHе ENDF Request 1022, Neutron cross section 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 - TENDL-2021: B-10(N,TOT) - TENDL-2021: B-11(N,TOT) cold neutron 10<sup>5</sup> = 105 Cross Section (barns)  ${}^{10}B$ 104 104 **Boron** (Capture Material) 10B **GEM** Detector 10<sup>3</sup> 10<sup>3</sup>  $^{7}Li$ 10<sup>2</sup> 10<sup>2</sup> . . B 10 E 10  $^{10}B + n \rightarrow ^{7}Li + ^{4}He + 0.48 \text{ MeV } \gamma + 2.31 \text{ MeV}(94\%)$  $E_{\alpha} = 1.47 \text{ MeV}, E_{11} = 0.84 \text{ MeV}$ -> <sup>7</sup>Li + <sup>4</sup>He + 2.79 MeV(6%) 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 10  $E_{\alpha} = 1.78 \text{ MeV}, E_{11} = 1.0 \text{ MeV}$ Incident Energy (MeV)

# **GEANT4 Simulation**

## **GEANT4 Simulation [Setup Variation]**

### Variations on active material

- Boron with natural proportion (10B:11B=1:4)
- Pure  $_{10}B$  ( 5 x cross-section of natural B )

### Variations on geometry

- Boron sheet [natural proportion]
  - Boron sheet at the drift area (T=0.5 mm)
- **Drift coating** [Pure 10B as B4C]
  - Coated cathode plate (T=1.5  $\mu$ m)
- Drift+Foil coating [Pure 10B as B4C]
  - Both of all GEM foils and cathode plate are coated (T = 1.5  $\mu$ m)

## This simulation was conducted to test the usefulness of the boron convertor



### **GEANT4 Simulation [Result]**

- R/O Electron = energy loss / W factor x amplification rate (18) ^ number of sheets (2)
- Efficiency difference between setups
  - Boron sheet: Backward > Forward

- Boron sheet

Drift coating

— Foil coating

R/O Electron

Coating: Forward > Backward



 $\times 10^{6}$ 

G4 Simulated

**R/O Electron** 

5

10

Forward

Counts

0.4

0.3

0.2

0.1

0

10

20

**R/O Electron** 

15

 $\times 10^{6}$ 

G4 Simulated

**R/O Electron** 

Backward

5

Counts

×10<sup>6</sup>

20

0.4

0.3

0.2

0.1

 $\times 10^{6}$ 

20

**R/O Electron** 

15

10

5

# Cold Neutron Test

### **HANARO Beam Specification**

- HANARO (High-flux Advanced Neutron Application ReactOr)
- Research reactor in Korea
- Bio-REF specifications neutron energy : 10~12 meV (Cold)
- Profile
  - 30 MW<sub>(Max)</sub>
  - Maximum shaping slit
    - X-width: 4 cm
    - Y-width: 0.5 cm
  - Flux: 4.8 x 10<sup>6</sup> Hz/cm<sup>2</sup>(for 30 MeV)



## Boron GEM Structure [boron sheet]



## Data Acquisition



- Read-out board
  - X-axis: 256 strips, 10 cm
  - Y-axis: 256 strips, 10 cm
- DAQ board
  - APV25<sub>(ASIC)</sub>
    - Amp. + Shaper + ADC
  - FPGA SoC
  - Triggered Externally



н

DAQ board

Asian Forum for Accelerators and Detectors, 18 Apr 2024

250

### **HANARO Experiment Results**

- Total running time: 43 minutes.
  - Flux: 4.8 x 10<sup>6</sup> Hz/cm<sup>2</sup>
  - Total # of neutrons: ~25 x 10<sup>9</sup> [est.]
  - 3600 V applied
- Beam profile (by slits)
  - X width = 4 cm
  - Y width = 0.5 cm
- Signal Selection
  - max(ADC) > 300
  - $N_{strip}$  fired  $\in \{1...30\}$
- Hit Position
  - \*C.O.M. of strips with ADC



## **Boron GEM Structure [boron coated]**



## Data Acquisition



The 512ch of the readout board is combined into one.



2000

4000

2000

4000

### **Boron Coating vs Non-Boron**



- HANARO power: 27 MW
- Threshold: -30 mV
- Slit horizontal: 40 mm
- Slit vertical: 0.2 mm (B4C shaping slit)
- Beam on/off distinction is obvious.
- Above 4500 V, a gamma event of 0.48 MeV (from boron) is detected.
- The noise level is low despite the low threshold.

### Next Plan & Summary

The Boron-GEM detector was developed and tested at HANARO for cold neutron detection.

- GEANT4 simulations have been completed to validate neutron efficiency calculations.
- The neutron detection capability of Boron GEM was demonstrated
- Future experiments at the RFT-30 cyclotron in Korea will use GEM detectors and Bonner spheres.

The efficiency of the B-GEM detector and the scale factor for neutron flux monitoring were determined by combining the results of the RFT-30 cyclotron experiment and GEANT4.

# Backup

### **Neutron cross section**



### **Geant4 Simulation [Alpha]**

- Geant4 simulation by two physics models
  - FTFP BERT HP
  - QGSP BIC HP
- Gas: Ar/CO<sub>2</sub> (70/30)
- Alpha energy: 1.78 MeV maximum energy after capture
- Geant4 simulation result
  - Peak: 8.1 mm
  - Maximum: 9 mm



### Alpha & Li7 R/O electron



### **HANARO** Neutron Beam Flux



# Detector Assemble

## **The Making Process**



## **The Making Process**





Assembled detector

- Insert a 10mm spacer between the cathode plate and the first GEM foil.
- Then cover the case and solder the circuit.

