自由電子雷射化學動力學和分子成像應用
（Application of FEL in chemical dynamics and molecule imaging）

張元賓（Yuan－Pin Chang）國立中山大學化學系

Outline

－Part 1：Diffractive imaging of isolated molecules with X－ray free－electron lasers（FEL）

- State and structure selection of molecules（量子態與結構篩選）
- Mix－field orientation of molecules（分子空間排序）
- FEL x－ray diffraction of molecules（X光繞射）
－Part 2：Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas－ phase molecules
－Photoelectron diffraction of molecules
－Part 3：Trapping single particles for imaging and spectroscopic applications
－Optically trapping of particles

Motivation: study molecular frame dynamics

Pump

Probe

100

Study 1) intermolecular interaction dynamics in the 2) molecular frame of a complex system by using 3) controlled molecular samples

Where is my "controller"?

Part I - single molecule X-ray diffraction

S. Stern et. al., Faraday Discuss. 171, 393 (2014)

Center for free－electron laser science （CFEL），DESY，Hamburg，Germany

CFEL

FLASH（FEL）
－ $4.2 \mathrm{~nm}-45 \mathrm{~nm}$
－ $50 \mathrm{fs}-200 \mathrm{fs}$
德國同步輻射（DESY）

Inside of CFEL
CFEL

People involved in this work

Jochen Küpper, ${ }^{1,2,3,4,5, *}$ Stephan Stern, ${ }^{1,2}$ Lotte Holmegaard, ${ }^{1,6}$ Frank Filsinger, ${ }^{4,5, a}$ Arnaud Rouzée, ${ }^{7,8}$ Artem Rudenko, ${ }^{5,9,10}$ Per Johnsson, ${ }^{, 1}$ Andrew V. Martin, ${ }^{\text {,00 }}$ Marcus Adolph, ${ }^{12}$ Andrew Aquila, ${ }^{1,21}$ Saša Bajt, ${ }^{21}$ Anton Barty, ${ }^{1}$ Christoph Bostedt, ${ }^{13}$ John Bozek, ${ }^{13}$ Carl Caleman, ${ }^{1,14}$ Ryan Coffee, ${ }^{13}$ Nicola Coppola, ${ }^{1}$ Tjark Delmas, ${ }^{1}$ Sascha Epp, ${ }^{5,9}$ Benjamin Erk, ${ }^{5,9, c}$ Lutz Foucar, ${ }^{5,15}$ Tais Gorkhover, ${ }^{12}$ Lars Gumprecht, ${ }^{1}$ Andreas Hartmann, ${ }^{16}$ Robert Hartmann, ${ }^{16}$ Günter Hauser, ${ }^{17,18}$ Peter Holl,,${ }^{16}$ Andre Hömke, ${ }^{5,9}$ Nils Kimmel, ${ }^{17}$ Faton Krasniqi, ${ }^{5,15}$ Kai-Uwe Kühnel, ${ }^{9}$ Jochen Maurer, ${ }^{6}$ Marc Messerschmidt, ${ }^{13}$ Robert Moshammer, ${ }^{9,5}$ Christian Reich, ${ }^{16}$ Benedikt Rudek, ${ }^{5,9,4}$ Robin Santra, ${ }^{1,2,3}$ Ilme Schlichting, ${ }^{15,5}$ Carlo Schmidt, ${ }^{5}$ Sebastian Schorb, ${ }^{12}$ Joachim Schulz, ${ }^{1, e}$ Heike Soltau, ${ }^{16}$ John C. H. Spence, ${ }^{19}$ Dmitri Starodub, ${ }^{19, f}$ Lothar Strüder, ${ }^{17,20.8}$ Jan Thøgersen, ${ }^{6}$ Marc J. J. Vrakking, ${ }^{7,8}$ Georg Weidenspointner, ${ }^{17,18}$ Thomas A. White, ${ }^{1}$ Cornelia Wunderer, ${ }^{21}$ Gerard Meijer, ${ }^{4, h}$ Joachim

Ullrich, ${ }^{9,5.4}$ Henrik Stapelfeldt, ${ }^{6,22}$ Daniel Rolles, ${ }^{5,15,21}$ and Henry N. Chapman ${ }^{1,2.3}$
${ }^{1}$ Center for Free-Electron-Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
${ }^{2}$ Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
${ }^{3}$ Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
${ }^{5}$ Max Planck Advanced Study Gro
${ }^{6}$ Department of Chemistr ${ }^{7}$ FOM Institute AMOLF, Sc
${ }^{8}$ Max-Born-Institute,
${ }^{9}$ Max Planck Institute for
${ }^{10}$ J. R. Macdonald Laboratory, Department o,
${ }^{11}$ Department of Physics, Lu.
${ }^{12}$ Technical Univ
${ }^{13}$ Linac Coherent Light Source, SLAC National Accele
${ }^{14}$ Uppsala University, Department of
${ }^{15}$ Max Planck Institute for
${ }^{16}$ PNSensor
${ }^{17}$ Max Planck Semicon
${ }^{18}$ Max Planck Institute for L ${ }^{19}$ Department of Physics, Ari ${ }^{20}$ University of Siegen, Emmy-Noen
${ }^{21}$ Deutsches Elektronen-S

> H. Chapman
${ }^{22}$ Interdisciplinary Nanestence Center (ivNivor, nulvus Cnversny,

Motivation: molecular frame

information from X-ray diffraction

Photon detector

Double slit interference

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/slits.html\#c1

Technique 1：spatial Control of molecules （分子空間排序）

Probing scheme：Coulomb explosion \Rightarrow Ion velocity parallel to the C－I bond

Velocity map imaging

Technique 1: Laser alignment / mix-field orientation

S. Viftrup et. al., Phys. Rev. Lett. 99, 143602 (2007); L. Holmegaard et. al., Phys. Rev. Lett. 102, 023001 (2009)

Technique 2：state and structure separation（量子態與結構篩選）

Trans－3－fluorophenol
$\mu=2.64 \mathrm{D}$

Cis－3－fluorophenol $\boldsymbol{\mu}=0.82 \mathrm{D}$

Stark energy $W=-\mu \cdot E$
Deflection force $\boldsymbol{F}=-\nabla(\boldsymbol{\mu} \cdot \boldsymbol{E})$
Electric field E（kV／cm）
150
125
100
75
50
x（mm）
14
Y．－P．Chang et．al．，Int．Rev．Phys．Chem．34， 557 （2015）

Technique 2: spatial separation of conformers and rotational states

Molecular beam intensity profiles

Neon expańsmion

Theory (Stark effect of polar molecules)

Stark energy $W=-\boldsymbol{\mu} \cdot \boldsymbol{E}$
Deflection force:

$$
F=-\nabla(\boldsymbol{\mu} \cdot E)=\mu_{\mathrm{eff}} \nabla E
$$

Effective dipole moment:

$$
\mu_{\mathrm{eff}}=-\frac{d W}{d E}
$$

Y.-P. Chang et. al., Comput. Phys. Commun. 185, 3395(2014)
T. Kierspel, D. Horke, Y.-P. Chang et. al., Chem. Phys. Lett. 591, 130 (2014)

Improved laser alignment due to state selection

No state selection

Stateselected samples

F. Filsinger, J. Küpper, G. Meijer, L. Holmegaard, J.H. Nielsen, I. Nevo, J.L. Hansen, and H. Stapelfeldt, J. Chem. Phys.1631, 64309 (2009).

Technique 3: X-ray diffraction - protein nanocrystals for determining protein structures

XFEL single-particle diffractive imaging pipeline

Technique 3: X-ray diffractive image pattern simulations of isolated molecules

Experimental setup

Linac Coherent Light Source (LCLS) / SLAC National Accelerator Laboratory, US

Atomic, Molecular, and Optical Physics beamline

- $\lambda=620 \mathrm{pm}(2 \mathrm{keV})$
- $E_{\text {pulse }}=4 \mathrm{~mJ}$
- Beam size $=30 \mu \mathrm{~m}$
- $I_{0} \approx 2 \times 10^{15} \mathrm{~W} / \mathrm{cm}^{2}$
- Photon flux $=1.35 \times$
10^{13} photons/pulse
- Pulse duration = 100 fs ,
- Repetition rate $=60_{2} \mathrm{~Hz}$

Determining spatial confinement of laser-aligned DIBN molecules

Alignment at different parts of deflected mol. beam

Experimental (raw) data of X-ray diffraction patterns

No YAG (no aligned)

YAG (aligned)

J. Küpper et. al., Phys. Rev. Lett. 112, 083002 (2014)
S. Stern et. al., Faraday Discuss. 171, 393 (2014)

Simulation of X-ray diffraction data

Simulated diffraction difference pattern on pnCCD detector
Simulated intensities on pnCCD detector

Experimental \& simulation results of diffraction difference

Simulations with different I-I distances

Comparing exp. and simulated Intensity profiles

S. Stern et. al., Faraday Discuss. 171, 393 (2014)

Exploding molecules during a FEL pulse

S. Stern et. al., Faraday Discuss. 171, 393 (2014)

Changing I - I distance during a FEL pulse

S. Stern et. al., Faraday Discuss. 171, 393 (2014)

Outlook 1: imaging dynamics of DIBN photodissociation

Pump-probe delay

Outlook 2: vector correlations in photo-fragmentation

Outlook 2: fragmentation holography experiment

Pump-probe delay

A. Barty, J. Küpper, and H.N. Chapman, Annu. Rev. Phys. Chem. 64, 415 (2013).

Part II - molecular frame information from photoelectron diffraction

$F(1 s)$ inner shell (binding energy:
692 eV) photoionization by X-ray ($723-754 \mathrm{eV}$) Photoelectron from $\mathrm{F}(1 s)$, Photon detector

1-ethynyl-fluorobenzene
($p-F A B$)
Molecular frame photoelectron angular distribution (MFPAD)
R. Boll et. al., Phys. Rev. A 68, 061402 (2013)
R. Boll et. al., Faraday Discuss. 171, 57 (2014)

Motivation: determining structures of transition state in photo-induced dynamics

People involved in this work

PHYSICAL REVIEW A 88, 061402(R) (2013)

Femtosecond photoelectron diffraction on laser-aligned molecules: Towards time-resolved imaging of molecular structure

R. Boll, ${ }^{1,2,3,{ }^{*}}$ D. Anielski, ${ }^{1,2,3}$ C. Bostedt, ${ }^{4}$ J. D. Bozek, ${ }^{4}$ L. Christensen, ${ }^{5}$ R. Coffee, ${ }^{4}$ S. De, ${ }^{5,6}$ P. Decleva, ${ }^{7}$ S. W. Epp, ${ }^{1,2,8}$ B. Erk, ${ }^{1,2,3}$ L. Foucar, ${ }^{1,9}$ F. Krasniqi,,${ }^{1,8,9}$ J. Küpper, ${ }^{10,11,12}$
A. Rouzée, ${ }^{13,14}$ B. Rudek, ${ }^{1,2,3,15}$ A. Rudenko, ${ }^{1,2,16}$ S. Schorb, ${ }^{4}$ H. Stapelfeldt, ${ }^{17}$
M. Stener, ${ }^{7}$ S. Stern, ${ }^{10,11}$ S. Techert,,${ }^{3,18,19}$ S. Trippel, ${ }^{10}$ M. J. J. Vrakking, ${ }^{13,14}$ J. Ullrich, ${ }^{1,2,15}$ and D. Rolles ${ }^{1,3,9, \dagger}$
${ }^{1}$ Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany
${ }^{2}$ Max Planck Institute for Nuclear Physics, 69117 Heidelberg, Germany
${ }^{3}$ Deutsches Elektronen Synchrotron (DESY), 22607 Hamburg, Germany
${ }^{4}$ SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
${ }^{5}$ Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
${ }^{6}$ Saha Institute of Nuclear Physics, 700064 Kolkata, India
${ }^{7}$ Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, 34127 Trieste, Italy
${ }^{8}$ Max Planck Institute for Structural Dynamics, 22607 Hamburg, Germany
${ }^{9}$ Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
${ }^{10}$ Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
${ }^{11}$ Department of Physics, University of Hamburg, 22761 Hamburg, Germany
${ }^{12}$ Center for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
${ }^{13}$ Max-Born-Institut, 12489 Berlin, Germany
${ }^{14}$ FOM-Institute AMOLF, 1098 XG Amsterdam, The Netherlands
${ }^{15}$ Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany
${ }^{16}$ J.R. MacDonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
${ }^{17}$ Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
${ }^{18}$ Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
${ }^{19}$ Institute of X-ray Physics, 37077 Göttingen University, Germany
(Received 6 August 2013; published 6 December 2013)

Experimental setup

LCLS, SLAC, AMO beamline

- $E_{\text {photon }}=723-754 \mathrm{eV}$
- $E_{\text {pulse }}=0.6-1.2 \mathrm{~mJ}$
- Pulse duration $=80 \mathrm{fs}$

R. Boll et. al., Phys. Rev. A 68, 061402 (2013). Velocity map image - for measuring F^{+}ions

Exp. results - F^{+}ion images

(a) without YAG
(Isotropic molecules)

R. Boll et. al., Faraday Discuss. 171, 57 (2014)

Exp. Results - photoelectrons

(a) FEL, pFAB
aligned molecules

(b) FEL, YAG, pFAB

F (1s) photoelectron angular distribution differences (\triangle PAD)

Symbol: from non-inverted data
Area: from inverted data

$\triangle \mathrm{PAD}$ as a function of photoelectron kinetic energy

R. Boll et. al., Phys. Rev. A 68, 061402 (2013).

Calculated PAD for different p-FAB geometries

Take home messages of part 1 \& 2

- Experimental demonstration of X-ray FEL diffraction for determining the nuclear structure of a molecule
- Diffraction of photoelectron induced by X-ray FEL for determining the electronic structure of a molecule
- Advantage of FEL: high brightness, very short pulse duration (small than the photo-damage / fragmentation time of molecules)
- Promise pump-probe / time-resolved experiment of X-ray / photoelectron diffraction.

Part III - Single particle measurements via trapping single particles for imaging applications

Motivation: femtosecond

crystallography of "nanocrystal"

3D diffraction pattern (collect 15,000 single shot diffraction images)

Interaction point

Photosystem I complex

Goal: optical guide for a stream of microscopic particles

Fig. 1. Conceptual scheme illustrating the compression of a particle stream injected into the interaction chamber with an aerodynamic lens, using a counter-propagating first-order Bessel beam - the 'funnel'. The background image in this figure is adapted from Ref [19].

Trapping single particles

- Optical trapping
- Gradient forces created by focused laser beams
- Beam shape: Gaussian beam or Bessel beam
- Type of particle: transparent to laser wavelength (few $\mu \mathrm{m}$)
- photophoretic forces created by laser beams
- Beam shape: Bessel beam
- Type of particle: not transparent to laser wavelength
- Acoustic levitation
- Type of particle: only limited by its size (sub mm to few mm)
- Electrodynamic balance
- Type of particle: charged particle (sub $\mu \mathrm{m}$ to less $100 \mu \mathrm{~m}$)

Acoustic levitation on Youtube

https://youtu.be/669AcEBpdsY

Acoustic levitation on Youtube

Optical trapping on youtube

Optical Tweezers: history

- The detection of optical scattering and gradient forces on micron sized particles was first reported in 1970 by Arthur Ashkin.
- Years later, Ashkin and colleagues reported the first observation of what is now commonly referred to as an optical tweezer: a tightly focused beam of light capable of holding microscopic particles stable in three dimensions.
- In 2018, Ashkin was awarded the Nobel Prize in Physics for this development.
- Optical tweezers have proven useful in other areas of biology as well.

Principle of optical trapping - gradient force (for transparent particles)

(a)
(C)
(b)
$\mathrm{P}_{\text {out }} 1$
f+
$f=0$

$$
\begin{gathered}
p_{\text {out }} \uparrow \\
p_{\text {in }} \uparrow
\end{gathered}
$$

(d)

Use aerosol optical tweezers (AOT) to trap single aerosol droplets (few $\mu \mathrm{m}$) in our lab

Single micro-droplet trapping observed by brightfield imaging

Droplet size $=$ few microns

(video replaying)
After 9 hours

Time-resolved Raman spectra of optically trapped single aerosol particle (aqueous citric acid)

Whispering-gallery modes (WGMs)

Whispering gallery in St. Paul's Cathedral
Wave optics

Cavity-enhanced WGMs + Mie theory as an "optical ruler" to

 measure the size of single microdroplet with an accuracy of $n m$

Polarization mode

Chang, Y.-P., Devi, Y. \& Chen, C.-H., Chemistry - An Asian Journal 16, 1644 (2021).

Take home message：Raman spectra time series as＂movie＂ of physicochemical properties of a single aerosol particle

S．－H．Hsu（徐韶鴻），F．－Y．Lin（林鳳瑜），G．G．Huang，and Y．－P．Chang，J．Phys．Chem．C， 127 （2023） 6248.

Optical traping via Bessel beam

a) Gaussian beam focused with a spherical lens

b) Gaussian beam focused with a conical lens (Axicon)

3D optical trap

Bessel beam trap + CRD: single particle spectroscopy

Figure 1. Schematic diagram of the single aerosol particle CRDS instrument. The Bessel beam profile is shown with brightfield and elastic scattered light images from an optically trapped droplet. AOM, acousto-optic modulator; PBS, polarizing beam splitter cube.

Principle of trapping non-transparent particles - photophoretic force

High-order Bessel beam as a vortex beam trap

A. V. Rode et al.

Trapping carbon nanotubes

Optical Funnel on a Stream of Particles

in Air or Vacuum

Acoustic levitation - schematic

Applications: combine with optical Diameter $=0.2-2 \mathrm{~mm}$ spectroscopy or mass spectrometry

Acoustic Levitation - TinyLev

http://dx.doi.org/10.1063/1.4989995

Application: study interface reaction dynamics via MS

