

電子加速器物理基礎介紹

Fundamentals of Electron Particle Accelerator Physics

黄暖雅 Nuan-Ya Huang Beam Dynamics Group NSRRC 2023 / 7 / 3

OUTLINE

- Overview of charged particle accelerator
 - Some basic concepts
- Beam transportation and bunch compressor
 - Characteristics of synchrotron radiation
 - Storage ring and FEL light sources

CHARGED PARTICLE ACCELERATOR

- A charged particle accelerator is a machine that uses <u>electromagnetic fields</u> to propel <u>charged</u> <u>particles</u> to very high speeds and energies, and to contain them in <u>well-defined</u> <u>beams</u>.
- Proton → particle nuclear physics ex. 6.5 TeV, 13 km LHC @ CERN
 → particle therapy · radio-isotope production · ion implanters
- ➤ Electron → SR light sources ex. 3GeV, 518.4 m TPS · 1.5 GeV, 120 m TLS

[ref] https://en.wikipedia.org/wiki/Particle_accelerator
https://www.shi.co.jp/industrial/en/product/medical/proton-therapy/proton-therapy-system.html

MOTION OF CHARGED PARTICLES

Uniform constant magnetic field B

For a relativistic charged particle (V ~ c)

$$F_B(B = 1 \text{ T}) \sim F_E(E = 300 \text{ MV/m})$$

Magnetic fields for deflection (bending and focusing).

$$\overrightarrow{F_B} = q \overrightarrow{v} \times \overrightarrow{B} = m \frac{v^2}{\rho}$$

Electric fields for acceleration (RF cavity).

E ~ 10 MV/m

$$\overrightarrow{F_E} = q\overrightarrow{E}$$

$$\overrightarrow{F_E} \bullet \overrightarrow{dS} = \Delta \ Energy \ Gain$$

SYNCHROTRON RADIATION

- > First observed in 1947 by General Electric Research Laboratory in Schenectady, New York
- > Basic element: (relativistic electron · bending magnet)

LIGHT TO EXPLORE THE EXTREME RESOLUTION

- Wavelength of commercially laser: ~ 200 nm 100 μm (No laser available at the extreme short wavelength region)
- > To explore the science at extreme tiny resolution, SR is a solution to intense VUV > EUV and X-ray source

PROPERTIES OF SYNCHROTRON RADIATION LIGHT

- ✓ High brightness (>> 10⁶ x Solar radiation)
- ✓ Tunable wavelength (extend to hard-X-ray)
- ✓ Excellent collimation (~ $1/\gamma$)
- ✓ small spot size and divergence
- ✓ Full polarization
- ✓ Pulsed time structure (several ps with spacing of ns)

$$Brightness = \frac{flux}{(2\pi)^2 \Sigma_x \Sigma_{x'} \Sigma_y \Sigma_{y'}} \left[\frac{photons}{sec - mm^2 - mrad^2 - 0.1\%B.W.} \right]$$

$$spectral\ flux = \frac{N_{photon}}{\Delta T \cdot \Delta \omega / \omega}$$

WORLD'S SYNCHROTRON RING FACILITIES

[Ref]: https://www.aps.anl.gov/spring-8-encyclopedia-of-synchrotron-radiation-facilities%E2%80%932nd-edition Encyclopedia of the Synchrotron Radiation Facilities

OVERVIEW OF SR AND LINAC-FEL FACILITIES

SR (STORAGE RING)

Schematic design of the Free Electron Laser with different components

Laser pulse/

Injector-accelerator

- 1) Electrongun
- 2) Injector
- 3) Accelerator
- 4) Undulator

LINAC FEL

(LINEAR ACCELERATOR FREE ELECTRON LASER)

[Ref]: https://www.psi.ch/en/swissfel/how-it-works

SOME BASIC CONCEPTS

RELATIVISTIC CHARGE PARTICLES

Speed of light

$$c = 2.99792458 \times 10^8 \text{ m/sec}$$

Lorentz factor

$$\gamma = \frac{E}{E_0} = \frac{1}{\sqrt{1 - \beta_{\gamma}^2}},$$

$$\beta_{\gamma} = \frac{v}{c}$$

Total energy > Rest energy > kinetic energy >

$$E = E_0 + E_k = m c^2 = \gamma m_0 c^2$$
,

$$E_0 = m_0 c^2 ,$$

$$E_{0,electron} = 0.511 \, MeV$$

 $E_{0,proton} = 938.08 \, MeV$

$E_k = E - E_0$

Momentum

$p = \gamma m_0 \mathbf{v} = \beta_{\gamma} \frac{E}{c},$

Velocity of a moving electron particle

$\mathbf{E}_{\mathbf{k}}$	$\beta_{\gamma} = v/c$	Y
100 keV	0.5482204	1.1956
150 MeV	0.99999424	294.5420
3 GeV	0.9999999855	5871.8414

Ultra-relativistic particles (V>0.99c)

- Move ~ 7.4 turns around the earth in 1 sec
- Move TPS machine ~580k turns in 1 sec (~1.75 μs/turn)

VISTIC EM FIELD & SPACE CHARGE FORCE

Fields in frame of charge Fields in frame of observer $\mathbf{B} = 0$ Figure from Stohr, Siegmann, "Magnetism"

The electric and magnetic field under Lorentz transformation between S and S' frame takes the following form

$$E_z = E_z'$$

$$E_z = \beta_z'$$

$$E_x = \gamma (E_x' + c\beta B_y')$$

$$B_x = \gamma (B_x' - \frac{1}{c}\beta E_y')$$
Lab frame
$$E_y = \gamma (E_y' - c\beta B_x')$$

$$B_y = \gamma (B_y' + \frac{1}{c}\beta E_x')$$

The Lorentz force between two charged particles parallel moving at a distance of d is

$$F_E = qE_y = \gamma qE'_y$$
 $\vec{E}' = (0, E'_y, 0)$ $\vec{B}' = (0, 0, 0)$

$$F_{B} = qc(\vec{\beta} \times \vec{B})_{y} = qc(\beta_{z}B_{x} - \beta_{x}B_{z}) = qc\beta B_{x} = -\gamma\beta^{2}\vec{q}E'_{y}$$

$$F = F_E + F_B = \gamma (1 - \beta^2) q E_y' = \frac{1}{\gamma} q E_y'$$
 $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$

The larger the beam energy, the weaker the space charge force

$$v = \frac{1}{\sqrt{1 - \beta^2}}$$

PARTICLE DISTRIBUTION AND PHASE SPACE

6-D phase space of beam

$$(x, x', y, y', t, \delta)$$

Transverse phase space (horizontal and vertical)

$$(x, x'); (y, y')$$

 $x' = v_x / v_z; y' = v_y / v_z$

$$(t, \delta); \delta = \frac{\Delta p}{p} = (\frac{1}{\beta^2}) \frac{\Delta E}{E}$$

Beam emittance

$$\varepsilon = A/\pi$$
,

$$\varepsilon_{x} = \sqrt{\langle x^{2} \rangle \langle x^{2} \rangle - \langle x x^{2} \rangle^{2}}.$$

COURANT-SNYDER PARAMETERS

➤ Liouville's theorem: the population density of particles in the phase space keeps the same constant under the conservative force of system (no energy difference)

$$x''(s) + k(s)x(s) = 0,$$

$$x(s) = \sqrt{\varepsilon}\sqrt{\beta}\cos(\phi(s) - \phi_0),$$

$$\frac{1}{2} \left(\beta \beta'' - \frac{1}{2} \beta'^2 \right) - \beta^2 \phi'^2 + \beta^2 k = 0,$$

 $\beta \phi' = \text{constant}.$

$$\phi(s) - \phi_0 = \int_0^s \frac{dS}{\beta(s)}.$$

$$\beta'' + 2k\beta - 2\gamma = 0, \qquad \gamma x^2 + 2\alpha xx' + \beta x'^2 = \varepsilon.$$

Courant-Snyder parameters are defined as,

the beam size
$$\sigma(s) = -\frac{\beta'(s)}{2}$$
 the slope of beam envelope evolution
$$\gamma(s) = \frac{1+\alpha^2(s)}{\beta(s)}$$
 the beam divergence
$$\sigma'(s) = \sqrt{\varepsilon \cdot \gamma(s)}$$

COURANT-SNYDER PARAMETERS

EMITTANCE OF RING AND LINAC (1/2)

Equilibrium emittance of ring

- Balance between the radiation damping and quantum excitation
- $oldsymbol{o}$ ϵ_0 depends on beam energy and lattice configuration

$$H = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_x^{\prime} + \beta_x \eta_x^{\prime 2} \propto \rho \theta^3$$

Normalized emittance of linac

- For the linear injector case that the beam energy is increasing along the beamline,
- the geometric emittance is damping during energy ramping, the normalized beam emittance ε_n is preserved as a constant

geometric emittance

$$\varepsilon = \frac{\varepsilon_n}{\beta \gamma} \propto \frac{1}{E},$$

Normalized emittance

$$\varepsilon_n = \beta \gamma \varepsilon$$
,

more information for the concept of normalized emittance: "Acceleration and Normalized Emittance", Prof. Steven M. Lund, USPAS 2018

EMITTANCE OF RING AND LINAC (2/2)

Equilibrium emittance of ring

$$\varepsilon_0 \propto E^2 \theta^3 \qquad \varepsilon_0 \propto \frac{E^2}{\text{(Circumference)}^3}$$

> the smaller bending angle (the concept of MBA lattice)

$$\sigma_{x}(s) = \sqrt{\varepsilon_{x} \cdot \beta_{x}(s)} \propto E$$

$$\sigma_{x}'(s) = \sqrt{\varepsilon_{x} \cdot \gamma_{x}(s)} \propto E$$

$$\sigma_{\gamma}/\gamma(s) \propto E$$

- Lower beam energy is beneficial to the beam emittance
- Beam energy is mainly decided by the desired radiation photon beam energy
- > As a result of advancements in magnet technology, the beam energy of recently designed machines is decreasing in order to reduce energy consumption while simultaneously improving beam emittance. (Spring8 → Spring8II: 8GeV→6GeV)

Normalized emittance of linac

 The minimum normalized emittance of the whole injector is limited at the stage of beam generation.

$$\varepsilon_n = \sqrt{(\varepsilon^{th})^2 + (\varepsilon^{rf})^2 + (\varepsilon^{sc})^2 + \cdots}$$

 higher beam energy helps to reduce the geometric emittance, hence also the transverse electron beam size and divergence

$$\sigma_{x}(s) = \sqrt{\frac{\varepsilon_{n}}{\beta \gamma} \cdot \beta(s)} \propto \sqrt{\frac{1}{E}}$$

$$\sigma_{x}'(s) = \sqrt{\frac{\varepsilon_{n}}{\beta \gamma} \cdot \gamma(s)} \propto \sqrt{\frac{1}{E}}$$

$$\sigma_{\gamma}/\gamma(s) \propto \frac{1}{H}$$

 $\sigma_{\gamma}/\gamma(s) \propto \frac{1}{E}$ \Rightarrow damping of ε with acceleration with conserved ε_n improves beam quality

EXAMPLE:

GENERATED ELECTRON DISTRIBUTION OF THERMIONIC RF GUN

Simulated electron dynamics in a thermionic RF gun

Particle distribution of generated electrons at the thermionic rf gun exit

ELECTRON BEAM PARAMETERS OF OPERATING FACILITIES

C	\mathbf{n}
3	К

FACILITY NAME	Size and Location	Energy	Pulse length	Energy spread	Equilibrium emittance	Rep. rate
TPS 2016	C=518.4 m TAIWAN	3 GeV	22 ps	8.86x10 ⁻⁴	1.6 nm-rad	~ 500 MHz (M-mode) ~580 kHz (S-mode)
MAX-IV 2017	C=528 m Sweden	3 GeV	400 ps	7.7x10 ⁻⁴	320 pm-rad	~ 100 MHz (M-mode)
EBS 2020	C=844 m France	6 GeV	23 ps	9.3x10 ⁻⁴	132 pm-rad	~ 350 MHz (M-mode)

LINAC FEL

FACILITY NAME	Size and Location	Energy	Pulse length	Energy spread	ε _{nx}	Geometric emittance	Rep. rate
SACLA, 2011	0.72 km RIKEN, JAPAN	8.5 GeV	10 fs	10-4	0.7 mm-mrad	42 pm-rad	30-60 Hz
PAL-XFEL 2017	1.1 km Pohang, Korea	10 GeV	10 – 100 fs		0.5 mm-mrad	26 pm-rad	60 Hz
LCLS-II, 2022	3.5 km SLAC, USA	4 GeV	50 fs	< 10 ⁻³	0.45 mm-mrad	57 pm-rad	0.62 MHz

BEAM TRANSPORTATION & BUNCH COMPRESSOR

M TRANSPORTATION

• the particle motion in a 6-D phase space can be expressed by the transfer matrix

$$\begin{bmatrix} \vec{X} \end{bmatrix}_2 = \mathbf{M} \begin{bmatrix} \vec{X} \end{bmatrix}_1, \qquad \vec{X} = (x, x', y, y', z, \delta), \quad \delta = \Delta E / E = \Delta \gamma / \gamma$$

 $M=M_5M_4M_3M_2M_1$

$$\begin{bmatrix} x(s_{2}) \\ x'(s_{2}) \\ y(s_{2}) \\ y'(s_{2}) \\ z(s_{2}) \\ \delta(s_{2}) \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\ R_{21} & R_{22} & R_{23} & R_{24} & R_{25} & R_{26} \\ R_{31} & R_{32} & R_{33} & R_{34} & R_{35} & R_{36} \\ R_{41} & R_{42} & R_{43} & R_{44} & R_{45} & R_{46} \\ R_{51} & R_{52} & R_{53} & R_{54} & R_{55} & R_{56} \\ R_{61} & R_{62} & R_{63} & R_{64} & R_{65} & R_{66} \end{bmatrix} \begin{bmatrix} x(s_{1}) \\ x'(s_{1}) \\ y(s_{1}) \\ y'(s_{1}) \\ z(s_{1}) \\ \delta(s_{1}) \end{bmatrix}, \text{ where }$$

$$R_{11}(x|x_{0}),$$

$$R_{12}(x|x'_{0}), \dots$$

$$R_{26}(x'|\delta_{0}),$$

$$R_{26}(x'|\delta_{0}),$$

$$R_{56}(z|\delta_{0}), T_{566}(z|\delta_{0}^{2}), U_{5666}(z|\delta_{0}^{3}), \dots$$

 $R_{12}(x|x_0),...$

MATRIX OF GENERAL ELEMENTS (1/3)

(1) Drift space

$$x_2 = x_1 + x_{p1} \cdot L$$
$$x_{p2} = x_{p1}$$

$$R_{drift} = \begin{bmatrix} 1 & L & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & L & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- The slope remains constant
- Position varies linearly as distance

MATRIX OF GENERAL ELEMENTS (2/3)

(2) Quadrupole magnet

$$R_{quad} = \begin{bmatrix} \cos kL & \frac{\sin kL}{k} & 0 & 0 & 0 & 0 \\ -k\sin kL & \cos kL & 0 & 0 & 0 & 0 \\ 0 & 0 & \cosh kL & \frac{\sinh kL}{k} & 0 & 0 \\ 0 & 0 & k\sinh kL & \cosh kL & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$k = \sqrt{\frac{g}{B\rho}}$$
 $B\rho[T - m] = \frac{p}{q} = 3.33\beta_{\gamma} \text{E [GeV]}$

- Horizontal focusing while vertical defocusing
- Momentum dependent focusing effects $k = k(\delta)$
- → Different focal length for off-momentum particle
- → chromatic aberration

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

MATRIX OF GENERAL ELEMENTS (3/3)

(3) Sector dipole magnet (hard-edge)

Particle enters and exits normal to the magnet pole faces

	cosθ	ρsinθ	0	0	0	$\rho(1-\cos\theta)$
	$-\frac{1}{\rho}\sin\theta$	$\cos\theta$	0	0	0	sinθ
$R_{sector} =$	0	0	1	ℓ	0	0
	0	0	0	1	0	0
	$\sin\theta$	$\rho(1-\cos\theta)$	0	0	1	$\rho(\theta - \sin\theta)$
	0	0	0	0	0	1

- > a natural focusing effects in the horizontal deflection plane; Vertical direction acts as a pure drift space
- > R16: momentum dependent horizontal displacement term (larger momentum particle gets less bending)
 - \rightarrow dispersion η \rightarrow cause beam size broadening $\sigma_{\chi} = \sqrt{\epsilon \beta} + \eta \delta$
 - → control of R16 for dispersion compensation
- > R56: momentum dependent longitudinal displacement term (larger momentum particle has shorter traveling path)
 - → will lead to bunch lengthening → control of R56 for the design of a bunch compressor

QUADRUPOLE MAGNETS FOR BEAM FOCUSING

- Horizontal focusing, while vertical defocusing
- > Needs at least two quadrupole magnets for beam focusing

SEXTUPOLE MAGNET FOR CHROMATIC CORRECTION

- Sextupole magnet
- +x particle, increase focusing strength
- -x particle, decrease focusing strength
- ➤ Chromatic aberration originated from the quadrupole could be corrected by the inclusion of dispersive dipole + sextupole element
- p.s. however, the nonlinear sextupole magnet will introduce the geometric aberration

CHARGED PARTICLE BEAM AND PHOTON BEAM TRANSPORTATION

	Charged particle	Photon beam
Deflection	Bending magnet	Mirror \ prism
Focusing	Quadruple magnet-s	Lens
Chromatic correction	quadrupole \ Dipole+ sextupole	Lens complex
Dispersion compensation (or bunch length control)	Dipole pairs	Prism pairs

BUNCH COMPRESSION SCHEME

Magnetic Bunching

- Step 1. RF chirp
- Step 2. dispersive section
- space for two-stage process
- wide range of adopted beam energy

< Issue >

- nonlineartity
- CSR emittance degradation,
- wake field ...

> Velocity Bunching

- 1 step in accelerating structure:acceleration + compression
- compact and simple operation
- suitable for low energy beam
- < Issue >
- nonlinearilty
- Space charge effects

CONCEPT OF MAGNETIC BUNCHING

- Step 1. energy modulation rf section
- Step 2. dispersive region
 - bending magnet, chicane (four-dipole system)...
- → Path difference of energy correlated bean

 θ : bending angle

- trajectory of lower energy (larger bending angle, longer path, delay)
- trajectory of central energy
- trajectory of higher energy (smaller bending angle, shorter path, advance)

MITATION OF MAGNETIC BUNCHING (1/2)

Energy is modulated by the rf field as

$$E_f(z) = E_i + eV_0 \cos(\varphi_0 + 2\pi z/\lambda), \qquad \text{(eq. 1)}$$

- Assumed the injected electron centroid energy is E_i and no chirp for simplicity ($\delta_i = 0$)
- → The correlated energy spread for the electron centroid operated at

$$\delta(z) = \frac{eV_0 \cos(\varphi + 2\pi z/\lambda)}{E_f} = h_1^b z + h_2^b z^2 + h_3^b z^3 + ..., \text{ (eq. 2)}$$

$$\begin{cases} h_1^b = -\frac{E_f - E_i}{E_f} k \tan \varphi, \ 1^{\text{st}} \text{ order chirp} \\ h_2^b = -\frac{E_f - E_i}{2E_f} k^2, \ 2^{\text{nd}} \text{ order chirp} < 0 \end{cases}$$

$$\begin{cases} h_1^b = -\frac{E_f - E_i}{2E_f} k^2, \ 2^{\text{nd}} \text{ order chirp} < 0 \end{cases}$$

$$\begin{cases} h_2^b = -\frac{E_f - E_i}{6E_f} k^3 \tan \varphi, \ 3^{\text{rd}} \text{ order chirp} \end{cases}$$

- For a general dispersive area includes the high order nonlinear term,
- \circ By combining eq.2 and eq.4 \rightarrow the electron position can be expressed as

$$z_f = z_i + R_{56}\delta + T_{566}\delta^2 + U_{5666}\delta^3 + ...,$$
 (eq. 4) \rightarrow Nonlinear term in LPS

$$z_f = z_i / C + A_2 z_i^2 + A_3 z_i^3 + ...,$$
 (eq. 5)

$$C = 1/(1 + h_1^b R_{56})$$
, linear compression ratio

$$A_2 = h_2^b R_{56} + (h_1^b)^2 T_{566}, \quad A_3 = h_3^b R_{56} + 2h_1^b h_2^b T_{566} + (h_1^b)^3 U_{5666}.$$
 (eq. 6)

LIMITATION OF MAGNETIC BUNCHING (2/2)

For typical chicane (4 dipole+drift)

$$S = L_T \sqrt{1 + \theta^2} \approx L_T \left(1 + 0.5\theta^2 \right)$$

$$\Delta S \propto \theta^2 = \left(\frac{\theta_0^2}{1+\delta}\right)^2 = \theta_0^2 \left(1 - 2\delta + 3\delta^2 - 4\delta^3 + \ldots\right),$$

$$\Delta S = \Delta S_0 + R_{56} \delta + T_{566} \delta^2 + U_{5666} \delta^3 + \dots$$

$$z_f = z_i / C + A_2 z_i^2 + ...,$$

where
$$A_2 = h_2^b R_{56} + (h_1^b)^2 T_{566}$$
,

- $\rightarrow A_2 > 0$ for conventional chicane
- → high order nonlinear term in the longitudinal phase space
- → current spike in the compressed bunch (unwanted current structure for FEL)

> Solution:

introduction of quadrupole and sextupole

$$R_{56}=\int \frac{R_{16}}{\rho}dS,$$

$$T_{566} = \int \frac{T_{166}}{\rho} + \frac{1}{2}R_{26}^2 + \frac{1}{2}\left(\frac{R_{16}}{\rho}\right)^2 dS,$$

→ compressor with adjustable R₅₆ and T₅₆₆

when
$$T_{566} = \frac{-h_2^b R_{56}}{(h_1^b)^2} \rightarrow A_2 = 0$$

→ smooth current distribution of compressed bunch is possible

MAGNETIC BUNCHING COMPRESSION

CONCEPT OF VELOCITY BUNCHING

- 1. Injected the beam near the rf zero crossing phase
- 2. Phase slippage due to velocity difference of electron beam and rf field
- 3. Rotation of longitudinal phase space
- 4. Compression and acceleration simultaneously in the accelerating structure
- ➤ Velocity difference of energy modulated beam → velocity bunching

$$V = \beta c = c \sqrt{1 - \frac{1}{\gamma^2}}$$

- For high energy beam ($\gamma > 1$, $\theta^{\sim}1$), particle velocity is saturated to c.
- This scheme works only for low energy particle (θ <1).

- → the deformation of longitudinal phase space during phase slippage
- → bunch is compressed and accelerated simultaneously through the accelerating structure

$$\begin{cases} \frac{d\gamma}{dz} = -\alpha k \sin(\psi) = -\frac{\partial H}{\partial \psi}, \\ \frac{d\psi}{dz} = k \left(1 - \frac{\gamma}{\sqrt{\gamma^2 - 1}}\right) = \frac{\partial H}{\partial \gamma}, \\ H = \left(\gamma - \sqrt{\gamma^2 - 1}\right) k - \alpha k \cos(\psi). \end{cases}$$

✓ [note] The minimum compressed bunch length will not be zero even for the ideal injected beam → the limitation of rf nonlinearity

LIMITATION OF VELOCITY BUNCHING

nonlinearity of the equi-potential line at higher injection energy is stronger

(rad)

- RF nonlinearity leads to asymmetric distribution of longitudinal phase space
- Possible solution to <u>mitigate</u> this effect
 - → injection of lower energy beam (higher compression)

(1)
$$\gamma_i$$
=10, 3 ps $\rightarrow \gamma_f$ =33, 335 fs, C=9
(2) γ_i =5, 3 ps $\rightarrow \gamma_f$ =49, 135 fs, C=22

BUNCH COMPRESSION VIA VELOCITY BUNCHING IN LINAC

SYNCHROTRON RADIATION FROM RELATIVISTIC ELECTRON

RELATIVISTIC ABERRATION AND DOPPLER EFFECTS

an evenly distributed light rays incident on an observer at rest

- ightharpoonup Relativistic aberration effects: ightharpoonup Excellent collimation of SR light (~ 1/ γ)
 For a moving observer, light rays appear to be tilted in the direction of motion
- > Doppler effect:

light that comes from the direction of motion is blue-shifted, while light from the opposite direction is red-shifted

[ref] https://demonstrations.wolfram.com/RelativisticAberrationAndDopplerShift/

FORMS OF SYNCHROTRON RADIATION

SYNCHROTRON RADIATION FROM BENDING MAGNET

Total radiation power of a charge $\propto \frac{L}{\rho^2 m_0^4}$

Total radiation power of a beam $\propto I$

+0.17 mrad at TPS

- Field lines condensed as a narrow spiral zone
- \rightarrow shorter pulse $\propto \frac{1}{v^3}$
- wider frequency spectrum

[Ref] Radiation 2D, T. Shintake, Real-time animation of synchrotron radiation, NIMA 507, 89-92, 2003. "Part I: Synchrotron Radiation", lecture notes to NYCU, Ting-Yi Chung, 2022. Particle Accelerator Physics, Helmut Wiedemann, Springer.

- Ec equally divided the spectrum distribution
- $E_c \sim E_{max}$ with maximum flux density
- An index to compare the bending source

$$E_c \propto \frac{\gamma^3}{\rho}$$
 TLS (r= 3.495 m, E= 1.5 GeV)
 $\epsilon_c \sim 2 \text{ keV}$
TPS (r= 8.4 m, E= 3 GeV)
 $\epsilon_c \sim 7 \text{ keV}$

UNDULATOR RADIATION

- Electric fields are composed of N_D periods
- radiation pulse duration $\propto N_p$
- FFT → sinc function like spectrum

[Ref] Radiation 2D, T. Shintake, Real-time animation of synchrotron radiation, NIMA 507, 89-92, 2003.
"Part I: Synchrotron Radiation", lecture notes to NYCU, Ting-Yi Chung, 2022.
Particle Accelerator Physics, Helmut Wiedemann, Springer.

For typical planar undulator

$$\lambda_n = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \begin{bmatrix} \lambda_u = 20 \text{ mm} & 3 \text{ GeV } (\gamma \sim 6000) \\ \lambda_1 = 0.29 \text{ nm} \end{bmatrix}$$

Lorentz contraction & Doppler effect

Adjustable radiation wavelength by tuning K (B field, the undulator gap)

$$K = 0.9337B[T]\lambda_u[cm] = \gamma\theta$$
 Deflection parameter (~ the maximum deflection of moving trajectory)

$$\frac{\Delta \omega_n}{\omega_n} = \frac{1}{n N_p}$$

The spectral bandwidth decreased as the number of undulator periods increased 42

SPATIAL AND SPECTRAL CHARACTERISTICS OF UR

 $\lambda_{3,\theta=0} = 59.45 \,\mu m$

$$\lambda_{1,\theta=0} = \frac{\lambda_p}{2\gamma^2} \left(1 + \frac{1}{2} K^2 \right) = 178.38 \,\mu\text{m}$$

- Faster fall off in $\psi=0$, π for the σ mode.
- The opening angle for the radiation is smaller in the deflecting plane than the vertical one.
- No energy distribution in ψ =0, π for the π mode
- The over all spatial intensity distribution includes a complex set of different radiation lobe depending on frequency, emission angle, and polarization.
- there is no π -mode along the forward direction (θ =0) while there is a strong forward lobe for the σ -mode (linear polarization)
- the even harmonics will vanish in the forward direction.
- i.e. There is only odd harmonics for on-axis observation.

43

UNDULATOR RADIATION TO FREE ELECTRON LASER

Spontaneous Undulator radiation

- Spatial coherence is somewhat limited (depends on electron beam emittance)
- temporal coherence is bad (long electron bunch in the storage ring, $\sigma_z \gg \lambda_v$)
- \succ for uncorrelated electrons, $E_{tot} \propto \sqrt{N_e}$, radiation power $\propto N_e$
- Needs a pinhole to filter the enhance the coherence performance

S	N	S	N	S	N	S	N
					\bigcirc	IID	→
N	S	N	S	N	S	N	S
int	War and the Control of the Control o		phase	LA A A			
Senter's	radiation	MAN	⇒ slip	MA	Á		
	N		N S N	N S N S	N S N S N	N S N S N S	N S N S N S N

Coherence	Undulator SR	FEL		
temporal	~ 10 ⁻⁵ %	~ 0.1 % (SASE) ~100 % (seeded)		
Horizonal	~ 0.3 %	~ 100 %		
vertical	~ 30 %	~ 100 %		
total	~ 10 ⁻⁸ %	~ 0.1 % (SASE) ~100 % (seeded)		

- ightharpoonup microbunching of electrons ightharpoonup ightharpoonup Radiation power $m \propto N_e^2$
- ~fully spatial and temporal coherence

[Ref] From undulators to free electron lasers, David Attwood, Unversity of Calofornia, Berkley, 2014
A short introduction to free electron laser, Andy Wolski, CERN school, 2012.
Lecture of "Foundation of FEL", Takashi Tanaka, RIKEN SPring-8 Center, ISBA 2022.

position in bunch

FEL

COHERENT UNDULATOR RADIATION

$$\begin{cases} \frac{dv_x}{dt} = \frac{-e}{\gamma m} v_z B_y, \\ \frac{dv_y}{dt} = \frac{e}{\gamma m} v_z B_x, \\ \frac{dv_z}{dt} = \frac{e}{\gamma m} v_x B_y. \end{cases}$$

the field of a moving charge in the observed time

$$\vec{E}_{rad}(t) = \frac{q}{4\pi\varepsilon_0 cR} \left[\frac{\hat{n} \times \left[\left(\hat{n} - \vec{\beta} \right) \times \vec{\beta} \right]}{\left(1 - \hat{n} \cdot \vec{\beta} \right)^3} \right]$$

λ (μm)

PERFORMANCES OF SYNCHROTRON RADIATION

[ref] https://photon-science.desy.de/research/students__teaching/sr_and_fel_basics/fel_basics/tdr_spectral_characteristics/index_eng.htm

ADVANCEMENTS IN BRIGHTNESS

Science and Technology of Future Light Sources — A White Paper (SLAC-R-917), 2008

[Ref.] https://www.slac.stanford.edu/pubs/slacreports/reports17/slac-r-917.pdf Science and Technology of Future Light Sources — A White Paper (SLAC-R-917)

TOWARD DIFFRACTION-LIMITED STORAGE RING LIGHT SOURCES

➤ Toward smaller electron beam emittance ring to increase the light brightness, spatial coherent flux, and coherent fraction.

Spatially incoherent

Spatially coherent

100 1000

The data of TPS-II (TBD) here is $\varepsilon = 115$ pm-rad,

[Ref] #1 Multi-Bend Achromat Lattice Design for the Future of TPS Upgrade, M.S. Chiu et al., Journal of Physics: Conference Series, 1350, 2019, 012033.

#2 Masahiro Katoh, Lecture notes of "Synchrotron Light Source", KEK IINAS 5th International School on Beam Dynamics and Accelerator Technology, 2022/11/23.

@Nuan-Ya Huang, 2023 FEL Summer School

DEVELOPING TREND OF LATTICE DESIGN FOR STORAGE RING

$$\varepsilon_0 = C_q \Upsilon^2 \frac{\langle H/|\rho|^3 \rangle}{j_x \langle 1/|\rho|^2 \rangle}$$

$$\varepsilon_0 \propto E^2 \theta^3$$

Double Bend Achromat (DBA)

Multi Bend Achromat (MBA)

LATTICE CONFIGURATION FROM TPS TO TPS-II

TPS-II HOA lattice (TBD)

4 DB~A lattice (79H2 case) 518.4 m, 3 GeV 24 cells with 6-fold symmetry $\epsilon = 1.6$ pm-rad $\alpha = 2.4 \times 10^{-4}$

vx = 26.19, vy = 13.25 $\xi x = -75$, $\xi y = -27$

Dipole numbers $48 \rightarrow 108$ $\varepsilon / 10$ times improve

HOA lattice (5-4-4-5 BA) $\epsilon = 162 \text{ pm-rad}$ $\alpha = 0.99 \times 10^{-4}$ $\xi x = -85, \, \xi y = -62$ $vx = 56.7, \, vy = 18.88$ $\beta x \sim 4, \, \beta y \sim 2.5 \, @ \, 5m \, SS \, center$

IMPROVEMENTS FROM TPS TO TPS-II

	TPS 79H2 case		εx = 100 η =0.0	pm-rad, 088 m	εx = 100 pm-rad, η =0.0 m	
Radiation wavelength	1 nm (1.24 keV)	0.1 nm (12.4 keV)	1 nm (1.24 keV)	0.1 nm (12.4 keV)	1 nm (1.24 keV)	0.1 nm (12.4 keV)
Relative brightness	1	1	3.3	13	16	63
CF	0.0110	0.0005	0.036	0.007	0.172	0.033
Relative CF	1	1	3.3	14.0	15.6	66.0

$$Brightness = \frac{flux}{(2\pi)^2 \Sigma_x \Sigma_x \Sigma_y \Sigma_y} \left[\frac{photons}{sec - mm^2 - mrad^2 - 0.1\%B.W.} \right]$$

COMPLEMENTARY AND SYNERGY OF SR AND FEL

SR (STORAGE RING)

- # of users
- Wider spectrum
- · Higher rep. rate
- Stability and flexibility

FEL (FREE ELECTRON LASER)

- Higher peak brightness
 (> 10¹⁰ x than SR)
- ~ fully spatial coherence
- better temporal coherence (~ 1% for SASE ,
 ~100 % for seeded FEL)
- Ultrashort time-resolved related discoveries

CONCLUSION

NSRRC (C)

- Properties of relativistic charged particle
- Some basic concepts of lattice design for a charged particle accelerator
- B for guiding \ E for acceleration
- dispersion · chromatic aberration · bunch compressor
- The complementary nature and synergistic potential of SR and FEL sources.
- The development of charged particle accelerator community is entering a new stage.

Charged particle accelerators are far more than that (ॐ ॐ)

Synchrotron radiation, with its illuminating properties,

inspires us to explore the wonders of this beautiful world.

@Nuan-Ya Huang, 2023 FEL Summer School

Welcome to Join NSRRC

