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 3D and beam quality effects
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Beam-wave Interaction in Undulator

Undulator

electron bunch

energy modulation



Beam-wave Interaction in Undulator

Undulator electron orbit

microbunching



Temporal Coherent Radiation by a Short Bunch

electrons radiate coherently

electrons radiate incoherently    kti
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Radiation field from a single electron (say the 
kth electron)
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Radiation power from a bunch of electrons
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For a bunch of electrons with Gaussian distribution G(z) which is characterized by RMS
bunch length z, 
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Then, the bunching factor of a beam with Gaussian distribution g() can be found as:
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Temporal Coherent Radiation by Multiple Bunches

coherent radiation from M
bunches 

Radiation power from a bunch of Nb electrons
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Radiation power from M bunches
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If we have a train of bunches moves ‘coherently’ in the
undulator, line width of radiation is not limited by
undulator length, but by total length of the bunch train.
But how can we produce such bunch train??

coherent radiation from a 
bunches of Nb electrons



Interaction of Electrons and EM Wave in Undulator

Consider an electron moving in a helical wiggler field,
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and interacting with a right-handed circular polarized 
wave:
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0  tkz , 0 is the initial phase of the wave.
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Consider an electron with initial velocity vz = v0 , its transverse velocity in the 
undulator is:
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electrons are moving at constant longitudinal 
velocities in helical undulators. However, this 
is not the case in planar undulators.



zk
m

eA
yvv

zk
m

eA
xvv

u
u

zy

u
u

zx

sin

cos









0

0

0

0

cos

sin

yzk
vkm

eA
y

xzk
vkm

eA
x

u

u

u

u

u

u







integrate

electron orbit

0vvz 

Horizontal electron orbits of different energy:

• electrons of different  are orbiting at the 
same period.

• maximum displacement from orbit center is 
inversely proportional to 

• ‘kick angle’ is also inversely proportional to 
• this is the origin of undulator dispersion
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Electron dynamics in a laser field

Consider a right-hand circularly polarized light wave propagating along +z 
axis in the undulator field, then

with , from Lorentz force equation (in MKS units)
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energy exchange between electron and wave (laser 
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for vz approx. equals to c (or transverse velocities are small enough)

• laser field do not have longitudinal component
• magnetic forces do no works on the electron



  tzkk u  Recall ponderomotive phase  

taking derivative with respect to z:
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‘equation of phase advance’



Resonance Condition
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this is the so-called ‘undulator equation’ (i.e. the 
resonance condition) that predicts the central wavelength 
of spontaneous radiation from a helical undulator with 
undulator parameter K at a given electron energy.
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If we choose 0  such that no phase slippage between the particle and
the ponderomotive wave (i.e. ), then we have 

in terms of 
wavelengths



The Pendulum Equations
For 1
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stable particle

unstable particle

bucket





define FEL gain (small signal) G as:
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The First FEL Experiment

John Madey (1934 – 2016)



FEL Oscillator

low gain
(interaction do not saturates)

(hole for output coupling)

optical cavity with high reflectivity mirrors
(no good mirrors < 200 nm)

drive beam with many many bunches
and high bunch rep.-rate

the first working FEL!!



Challenges for X-ray FELs 

• No high reflectance mirrors in VUV and x-ray ranges

• Lack of seed lasers in beyond soft x-ray range

• To achieve high gain in a single pass, one has to have a quality 
electron beams at high peak current 

• May need a long undulator.

“Finite gain is available from the far‐infrared through the visible region raising the 
possibility of continuously tunable amplifiers and oscillators at these frequencies 
with the further possibility of partially coherent radiation sources in the ultraviolet 
and x‐ray regions to beyond 10 keV. Several numerical examples are considered.”

John M. J. Madey in “Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field”, Journal of Applied 
Physics Vol. 42, Number 1 (1971)



• In Vlasov beam model, one has to solve the following equations self-consistently 
(Maxwell-Vlasov equations):
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• Vlasov equation is, in general, 
nonlinear.

• given a initial beam distribution, 
integrate Vlasov numerically.

• determine an equilibrium state, 
linearize Vlasov equation w.r.t. this 
state and solve the linearized 
equation for small signals. 



1D Model of Beam-Wave Interaction in Helical Undulator

• Neglecting the transverse variation of the radiation field.

• Assume the wiggler’s gap and width are much larger than the beam size such that 
magnetic field is approx. constant within the beam size.

• Beam-wave interaction is strong enough, electron dynamics in an undulator is 
affected by the radiation field and if a positive feedback mechanism has been 
setup, the amplitude of the radiation field grows exponentially.

electron 
dynamics in 
undulator

coherent 
radiation(microbunching)

system dispersioninput wave

(energy modulation)

amplified wave

Feedback*

Vlasov equation Maxwell Equation

note that coherent radiation 
is in forward direction



Evolution of Radiation Power in FEL



Major Performance Parameters for High Gain FELs
For a FEL amplifier, the growth and saturation of radiation can be described by:

 is the coupling coefficient, Pn is the input power. For SASE, the input noise power is 
the frequency integrated synchrotron radiation power in an FEL gain bandwidth 
generated in the first gain length. Lg is the gain length, Lsat is the saturation length, Psat

is the saturated power. The saturation length is given by
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Lg , Lsat and Psat are the major performance parameters for a high gain FEL amplifier.



Formulas for 1D SASE FEL Theory

• Coupling coefficient, :

• Effective input noise power:

• 1D gain length:
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 341 uDL 

1D model gives the highest 
possible FEL gain (shortest 
gain length).



Formulas for 1D SASE FEL Theory (cont’d)

• Saturation power Psat:

• Pierce parameter  :

beamsat PP 
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Beam Quality Requirements of High Gain FELs

Acceptable beam emittance is defined by the relation:
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FEL Saturation

• The electrons oscillates in phase space at synchrotron frequency s
2 = 2D2E/0

2. As 
the radiation field E grows exponentially, the bucket height in the phase space 
increases, and the energy spread of the beam also increases due to the interaction 
with the radiation field.

• As the radiation power increases, the electron distribution rotates faster and faster 
in the bucket (i.e. s  E) , but the growth rate of the field remains nearly the 
same.

• As a results, when the rotation is faster than growth rate and the rotation reaches 
near 90 degree in the bucket. The electrons can not radiate energy any more and 
start to absorb energy from the field. The FEL is said to reach its saturation. 



Saturation power can be estimated when the synchrotron frequency s increases to 
be equal to the growth rate, it is found to be:
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But n0cA is the number of electrons per second, n0cAmc20 is the electron beam 
power Pe. We have:

es PP 
This is an important result because it implies  is the 
approximate FEL interaction efficiency!!



3D effects

• A beam with finite transverse emittance will have certain angular 
spread that makes the beam expands in size as it propagates along 
the undulator.

• Planar undulator will have natural focusing force.
• Strong focusing is usually used to keep the beam size nearly constant 

for effective FEL interaction
• Diffraction of radiation field has to be considered.

strong focusing of electron 
beam for long distance 
propagation



Beam Quality Requirements of High Gain FELs

Acceptable beam emittance is defined by the relation:
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First SASE FEL @ Argonne National Lab



First Hard X-ray FEL Facility 

Claudio Pellegrini Paul Emma (right)

LCLS @ SLAC National Accelerator Laboratory



Self-amplification of Spontaneous Emission (SASE)

Example of LCLS-II 13 keV case 



First HGHG Expt. @ Brookhaven National Lab

Li Hua Yu



SASE with self-seeding

e-beam 

chicane
seed

High Gain Harmonic Generation

e-beam

n

Direct seeding

e-beam


seed 

Spectral bandwidth can be 
reduced significantly. However, 
large  fluctuation in output 
intensity is expected


