High Gain Free Electron Lasers

Wai－Keung Lau（劉偉強）

2023 NSRRC Summer School on Free Electron Lasers

July $3^{\text {rd }}-7^{\text {th }}, 2023$

Outline

$>$ Introduction to high gain FELs
$>1 D$ theory of high gain FELs
$>$ Self-amplification of spontaneous radiation (SASE)
$>$ Seeded FELs

- Self-seeding
- High-gain harmonic-generation (HGHG) and other seeding schemes
$>3 \mathrm{D}$ and beam quality effects

Beam-wave Interaction in Undulator

electron orbit

Beam-wave Interaction in Undulator

electron orbit

Beam-wave Interaction in Undulator

Temporal Coherent Radiation by a Short Bunch

electrons radiate incoherently
electrons radiate coherently

$$
=\sum_{k}^{N_{e}}\left|\vec{E}_{k}\right|^{2}+\sum_{k \neq j}^{N_{e}} \vec{E}_{k}(\omega) \cdot \vec{E}_{j}(\omega)
$$

Radiation field from a single electron (say the $k^{\text {th }}$ electron)

$$
\vec{E}_{k}(\omega)=\vec{E}_{0} e^{i\left(\omega t+\varphi_{k}\right)}
$$

Radiation power from a bunch of electrons

$$
\begin{aligned}
P(\omega) & \propto\left(\sum_{k}^{N_{e}} \vec{E}_{k}\right) \cdot\left(\sum_{j}^{N_{e}} \vec{E}_{j}^{*}\right) \propto \sum_{k, j}^{N_{e}} e^{i\left(\omega t+\varphi_{k}\right)} e^{-i\left(\omega o t \varphi_{j}\right)} \\
& =\sum_{k, j}^{N_{c}} e^{i\left(\varphi_{k}-\varphi_{j}\right)}=N_{e}+\sum_{k \neq j}^{N_{c}} e^{i\left(\varphi_{k}-\varphi_{j}\right)}=N_{e}+N_{e}\left(N_{e}-1\right)\left\langle\left.\left\langle e^{i \varphi}\right\rangle\right|^{2}\right.
\end{aligned}
$$

$$
P(\omega)=\left[N_{e}+N_{e}\left(N_{e}-1\right)\left|\left\langle e^{i \varphi}\right\rangle\right\rangle^{2}\right] P_{0}(\omega)
$$

$P_{0}(\omega)$ is the single electron radiation power

For a bunch of electrons with Gaussian distribution $G(z)$ which is characterized by $R M S$ bunch length σ_{z},

$$
G(z)=\frac{N_{e}}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{z^{2}}{2 \sigma_{z}^{2}}\right)
$$

Then, the bunching factor of a beam with Gaussian distribution $\mathrm{g}(\sigma)$ can be found as:

$$
\begin{aligned}
g(\sigma) & \equiv\left|\left\langle e^{i \phi}\right\rangle\right|=\frac{\int G(z) e^{i \phi} d z}{\int G(z) d z} \\
& =\frac{\int_{-\infty}^{\infty} \exp \left(-\frac{z^{2}}{2 \sigma^{2}}+i \frac{2 \pi z}{\lambda}\right) d z}{\int_{-\infty}^{\infty} \exp \left(-\frac{z^{2}}{2 \sigma^{2}}\right) d z}=\exp \left(-2 \pi^{2} \sigma^{2} / \lambda^{2}\right) \\
P(\omega) & =\left[N_{e}+N_{e}\left(N_{e}-1\right) g^{2}(\sigma)\right] P_{0}(\omega)
\end{aligned}
$$

Temporal Coherent Radiation by Multiple Bunches

coherent radiation from a bunches of N_{b} electrons
coherent radiation from M bunches

Radiation power from a bunch of N_{b} electrons

$$
P(\omega) \approx N_{b}^{2} g^{2}(\sigma) P_{0}(\omega)
$$

Radiation power from M bunches

$$
P(\omega) \approx M^{2} N_{b}^{2} g^{2}(\sigma) P_{0}(\omega)
$$

If we have a train of bunches moves 'coherently' in the undulator, line width of radiation is not limited by undulator length, but by total length of the bunch train. But how can we produce such bunch train??

Interaction of Electrons and EM Wave in Undulator

Consider an electron moving in a helical wiggler field,

$$
\vec{B}_{u}=B_{u} \cos k_{u} z \hat{e}_{x}+B_{u} \sin k_{u} z \hat{e}_{y}
$$

and interacting with a right-handed circular polarized wave:

$$
\begin{aligned}
& \vec{E}_{L}=E_{0} \cos \Phi \hat{e}_{x}-E_{0} \sin \Phi \hat{e}_{y} \\
& \vec{B}_{L}=\frac{E_{0}}{c} \sin \Phi \hat{e}_{x}+\frac{E_{0}}{c} \cos \Phi \hat{e}_{y} .
\end{aligned}
$$

where $\Phi=k z-\omega t+\psi_{0}, \psi_{0}$ is the initial phase of the wave. From Lorentz force equation,

$$
\frac{d \vec{p}}{d t}=e\left[\vec{E}_{L}+\vec{v} \times\left(\vec{B}_{u}+\vec{B}_{L}\right)\right] \quad \vec{p}=\gamma m \vec{v}
$$

Helical undulator field can be generated by a bifilar helical current winding.

$\vec{B}_{u}=2 B_{u}\left[I_{1}^{\prime}(\lambda) \cos \chi \hat{e}_{r}-\frac{1}{\lambda} I_{1}(\lambda) \sin (\lambda) \hat{e}_{\theta}+I_{1}(\lambda) \sin \chi \hat{e}_{2}\right]$ where $\lambda=k_{u} r, \chi=\theta-k_{u} z, I_{1}$ and I_{1}^{\prime} are the $1^{\text {st }}$ order modified Bessel function of the first kind and its derivatives respectively. In the limit $r \ll \lambda_{u}$,
$\vec{B}_{u}=B_{u}\left(\hat{x} \cos k_{u} z+\hat{y} \sin k_{u} z\right)$

Consider an electron with initial velocity $v_{z}=v_{0}$, its transverse velocity in the undulator is:

$$
\begin{array}{ll}
\vec{v}_{\perp}=-\frac{e B_{u}}{m k_{u} \gamma}\left(\hat{x} \cos k_{u} z+\hat{y} \sin k_{u} z\right) \\
\vec{\beta}_{\perp}=-\frac{K}{\gamma}\left(\hat{x} \cos k_{u} z+\hat{y} \sin k_{u} z\right) \quad \because m \gamma \frac{d \vec{v}_{\perp}}{d t}=e v_{z} \hat{e}_{z} \times \vec{B}_{u}
\end{array}
$$

$\beta_{z}=\left[\beta^{2}-\left(\frac{K}{\gamma}\right)^{2}\right]^{1 / 2}$
electrons are moving at constant longitudinal velocities in helical undulators. However, this is not the case in planar undulators.
where
$K=\frac{e B_{u}}{m c k_{u}}=\frac{e \lambda_{u} B_{u}}{2 \pi m c}$
undulator parameter

$$
K=0.934 \lambda_{u}[\mathrm{~cm}] B_{u}[T]
$$

$$
x^{\prime}=-\frac{e A_{u}}{m c} \cdot \frac{c}{v_{z}} \cos k_{u} z=-\frac{K}{\gamma} \cdot \frac{1}{\beta_{z}} \cos k_{u} z
$$

$$
\begin{array}{cc}
v_{x}=v_{z} x^{\prime}=-\frac{e A_{u}}{m \gamma} \cos k_{u} z & \text { integrate } \\
v_{y}=v_{z} y^{\prime}=-\frac{e A_{u}}{m \gamma} \sin k_{u} z & v_{z} \approx v_{0} \\
m \gamma k_{u} v_{0} \\
\sin k_{u} z+x_{0} \\
& y=\frac{e A_{u}}{m \gamma k_{u} v_{0}} \cos k_{u} z+y_{0}
\end{array}
$$

Horizontal electron orbits of different energy:

- electrons of different γ are orbiting at the same period.
- maximum displacement from orbit center is inversely proportional to γ
- 'kick angle’ is also inversely proportional to γ
- this is the origin of undulator dispersion

Electron dynamics in a laser field

Consider a right-hand circularly polarized light wave propagating along $+z$ axis in the undulator field, then

$$
\begin{array}{ll}
\vec{E}_{L}=E_{0} \cos \Phi \bar{x}-E_{0} \sin \Phi \widehat{y} & \Phi=k z-\omega t+\psi_{0} \\
\vec{B}_{L}=\frac{E_{0}}{c} \sin \Phi \widehat{x}+\frac{E_{0}}{c} \cos \Phi \widehat{y} & \psi_{0} \text { is the initial phase of the wave }
\end{array}
$$

with $\vec{p}=\gamma m \vec{v} \quad$, from Lorentz force equation (in MKS units)

$$
\frac{d \vec{p}}{d t}=-e\left[\vec{E}_{L}+\vec{v} \times\left(\vec{B}_{u}+\vec{B}_{L}\right)\right] \quad \text { or } \quad \frac{d(\gamma \vec{\beta})}{d t}=-\frac{e}{m c}\left[\vec{E}_{L}+c \vec{\beta} \times\left(\vec{B}_{u}+\vec{B}_{L}\right)\right]
$$

taking dot product with $\vec{\beta}$

define phase of the 'ponderomotive potential' as $\phi=\left(k+k_{u}\right) z-\omega t$

$$
\frac{d \gamma}{d t}=-\frac{e}{m c}\left(\vec{\beta}_{\perp} \cdot \vec{E}_{L}\right)=\frac{e E_{0}}{m c} \cdot \frac{K}{\gamma}\left(\cos \Phi \cos k_{u} z-\sin \Phi \sin k_{u} z\right)=\frac{e E_{0}}{m c} \cdot \frac{K}{\gamma} \cos \left({ }^{\left(\phi \phi+\psi_{0}\right.}\right)^{\prime} \prime \prime
$$

$$
\frac{d \gamma}{d-}=\frac{e E_{0}}{} \cdot \frac{K}{\sim} \cos \left(\phi+\psi_{0}\right) \approx \frac{e E_{0}}{m^{2}} \cdot \frac{K}{2} \cos \left(\phi+\psi_{0}\right) \quad \begin{aligned}
& \text { energy exchange between electron and wave (laser } \\
& \text { field) per unit time is a periodic function of } \phi!!
\end{aligned}
$$ field) per unit time is a periodic function of ϕ !!

for v_{z} approx. equals to c (or transverse velocities are small enough)

Recall ponderomotive phase $\quad \phi \equiv\left(k+k_{u}\right) z-\omega t$
taking derivative with respect to z :

$$
\frac{d \phi}{d z}=k+k_{u}-\omega \frac{1}{v_{z}}=k+k_{u}-k \frac{1}{\beta_{z}}
$$

but $\beta_{z}=\left[\beta^{2}-\left(\frac{K}{\gamma}\right)^{2}\right]^{1 / 2}=\left[\left(1-\frac{1}{\gamma^{2}}\right)-\left(\frac{K}{\gamma}\right)^{2}\right]^{1 / 2} \approx\left[1-\left(\frac{1+K^{2}}{2 \gamma^{2}}\right)\right]$
we have $\frac{d \phi}{d z}=k_{u}-k\left(\frac{1+K^{2}}{2 \gamma^{2}}\right)$
in the limit $\beta \gg \beta_{\perp}$ or K / γ and $\beta \rightarrow 1$

Resonance Condition

If we choose $\gamma=\gamma_{0}$ such that no phase slippage between the particle and the ponderomotive wave (i.e. $d \phi / d z=0$), then we have

$$
k_{u}-k\left(\frac{1+K^{2}}{2 \gamma_{0}^{2}}\right)=0
$$

in terms of wavelengths

$$
\lambda=\frac{\lambda_{u}}{2 \gamma_{0}^{2}}\left(1+K^{2}\right)
$$

this is the so-called 'undulator equation' (i.e. the resonance condition) that predicts the central wavelength of spontaneous radiation from a helical undulator with undulator parameter K at a given electron energy.

If we define $\eta \equiv\left(\gamma-\gamma_{0}\right) / \gamma_{0}$ and assume $\eta \ll 1$

$$
\frac{d \phi}{d z}=k_{u}-k \frac{1+K^{2}}{2 \gamma_{0}^{2}} \cdot \frac{\gamma_{0}^{2}}{\gamma^{2}}=k_{u}\left(1-\frac{\gamma_{0}^{2}}{\gamma^{2}}\right) \approx 2 k_{u} \eta
$$

The Pendulum Equations

For $\eta \ll 1$
$\frac{d \eta}{d z}=\frac{k a_{L} a_{u}}{\gamma_{0}^{2}} \cos \left(\phi+\psi_{0}\right)$
$\frac{d \phi}{d z}=2 k_{u} \eta$

$$
a_{L}=\frac{e A_{L}}{m c}=\frac{e E_{0}}{m c \omega_{L}}=\frac{e E_{0}^{\sigma}}{m c^{2} k} \quad \text { and } \quad a_{u}=K
$$

$$
\frac{d^{2} \phi}{d z^{2}}=\frac{2 k k_{u} a_{L} a_{u}}{\gamma_{0}^{2}} \cos \left(\phi+\psi_{0}\right)
$$

$$
\begin{aligned}
& \because \frac{d \phi}{d z} \frac{d^{2} \phi}{d z^{2}}=\frac{1}{2} \frac{d}{d z}\left(\frac{d \phi}{d z}\right)^{2} \\
& \frac{1}{2}\left(\frac{d \phi}{d z}\right)^{2}=\int \frac{d^{2} \phi}{d z^{2}} \cdot \frac{d \phi}{d z} d z=\int \frac{d^{2} \phi}{d z^{2}} d \phi+() \\
& \text { constant of integration }
\end{aligned}
$$

nonlinear oscillation!!

'kinetic energy' 'potential energy'

define FEL gain (small signal) G as:

$$
\begin{aligned}
G & =-\frac{\langle\delta \gamma\rangle m_{0} c^{2} \times \text { volume }}{\varepsilon_{0} E_{0}^{2} \times \text { volume }} \\
& \approx-\frac{e^{2} \rho_{e}}{2 \varepsilon_{0} m_{0}} \frac{a_{L}^{2} a_{u}^{2} \omega}{2 \gamma_{0}^{3}(\Delta \omega)^{3}}\left(1-\beta_{z 0}\right)[2(1-\cos \Delta \omega t+\Delta \omega t \sin \Delta \omega t)]
\end{aligned}
$$

let

$$
G_{0}=\frac{e^{2} \rho_{e}}{2 \varepsilon_{0} m_{0}} \frac{a_{L}^{2} a_{u}^{2} \omega\left(1-\beta_{z 0}\right) L^{3}}{2 \gamma_{0}^{3} c^{3} \beta_{z 0}^{3}}
$$

and $\eta=\Delta \omega L / v_{z 0}$,
small signal FEL gain is given as:

$$
G(\eta)=-G_{0} g(\eta)
$$

with $g(\eta) \equiv[2(1-\cos \eta)-\eta \sin \eta] \frac{1}{\eta^{3}}$

The First FEL Experiment

John Madey (1934-2016)

Volume 36, Number 13

Observation of Stimulated Emission of Radiation by Relativistic Electrons in a Spatially Periodic Transverse Magnetic Field*

Luis R. Elias, William M. Fairbank, John M. J. Madey, H. Alan Schwettman, and Todd I. Smith Department of Physics and High Energy Physics Laboratory, Stanford University, Stanford, California 94305 (Received 15 December 1975)
Gain has been observed for optical radiation at $10.6 \mu \mathrm{~m}$ due to stimulated radiation by a relativistic electron beam in a constant spatially periodic transverse magnetic field. A gain of 7% per pass was obtained at an electron current of 70 mA . The experiments indicate the possibility of a new class of tunable high-power free-electron lasers.

FEL Oscillator

First Operation of a Free-Electron Laser*

D. A. G. Deacon, \dagger L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith High Energy Physics Laboratory, Stanford University, Stanford, California 94305 (Received 17 February 1977)

A free-electron laser oscillator has been operated above threshold at a wavelength of $3.4 \mu \mathrm{~m}$.
drive beam with many many bunches and high bunch rep.-rate
undulator magnet

optical cavity with high reflectivity mirrors (no good mirrors < 200 nm)

Challenges for X-ray FELs

"Finite gain is available from the far-infrared through the visible region raising the possibility of continuously tunable amplifiers and oscillators at these frequencies with the further possibility of partially coherent radiation sources in the ultraviolet and x-ray regions to beyond 10 keV . Several numerical examples are considered."

John M. J. Madey in "Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field", Journal of Applied Physics Vol. 42, Number 1 (1971)

- No high reflectance mirrors in VUV and x-ray ranges
- Lack of seed lasers in beyond soft x-ray range
- To achieve high gain in a single pass, one has to have a quality electron beams at high peak current
- May need a long undulator.
- In Vlasov beam model, one has to solve the following equations self-consistently (Maxwell-Vlasov equations):

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+\sum_{i=1}^{3}\left[\frac{\partial f}{\partial q_{i}} \dot{q}_{i}+q(\vec{E}+\vec{v} \times \vec{B})_{i} \frac{\partial f}{\partial P_{i}}\right]=0 \\
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \times \vec{B}=\mu_{0} q \int \vec{v} f\left(q_{i}, P_{i}, t\right) d^{3} P+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& \nabla \cdot \vec{E}=\frac{q}{\varepsilon_{0}} \int f\left(q_{i}, P_{i}, t\right) d^{3} P \\
& \nabla \cdot \vec{B}=0
\end{aligned}
$$

1D Model of Beam-Wave Interaction in Helical Undulator

- Neglecting the transverse variation of the radiation field.
- Assume the wiggler's gap and width are much larger than the beam size such that magnetic field is approx. constant within the beam size.
- Beam-wave interaction is strong enough, electron dynamics in an undulator is affected by the radiation field and if a positive feedback mechanism has been setup, the amplitude of the radiation field grows exponentially.

Evolution of Radiation Power in FEL

Major Performance Parameters for High Gain FELs

For a FEL amplifier, the growth and saturation of radiation can be described by:

$$
\boldsymbol{P}(z)=\alpha \boldsymbol{P}_{n} e^{z / L_{g}}<\boldsymbol{P}_{\text {sat }}
$$

α is the coupling coefficient, P_{n} is the input power. For SASE, the input noise power is the frequency integrated synchrotron radiation power in an FEL gain bandwidth generated in the first gain length. L_{g} is the gain length, $L_{\text {sat }}$ is the saturation length, $P_{\text {sat }}$ is the saturated power. The saturation length is given by

$$
L_{s a t}=L_{g} \ln \left(\frac{P_{s a t}}{\alpha P_{n}}\right)
$$

$L_{g}, L_{\text {sat }}$ and $P_{\text {sat }}$ are the major performance parameters for a high gain FEL amplifier.

Formulas for 1D SASE FEL Theory

- Coupling coefficient, α :

$$
\alpha=1 / 9
$$

- Effective input noise power:

$$
P_{n} \approx \rho^{2} c E_{0} / \lambda
$$

- 1D gain length:

$$
L_{1 D}=\lambda_{u} / 4 \pi \sqrt{3} \rho
$$

1D model gives the highest possible FEL gain (shortest gain length).

Formulas for 1D SASE FEL Theory (cont'd)

- Saturation power $P_{\text {sat }}$:

$$
P_{\text {sat }} \approx \rho P_{\text {beam }}
$$

- Pierce parameter ρ :

$$
\rho=\left[\left(\frac{I}{I_{A}}\right)\left(\frac{\lambda_{u} A_{u}}{2 \pi \sigma_{x}}\right)^{2}\left(\frac{1}{2 \gamma_{0}}\right)^{3}\right]^{1 / 3}
$$

$I_{\mathrm{A}}=17.045 \mathrm{kA}$ is the Alfven current, $A_{u}=a_{u}\left[J_{0}(\xi)-J_{1}(\xi)\right]$ for planar undulator.
$\sigma_{x}=\sqrt{\beta \varepsilon_{n} / \gamma_{0}}$ is the electron beam size.
$A_{u}=a_{u}$ for helical undulator

$$
\xi=a_{u}^{2} / 2\left(1+a_{u}^{2}\right)
$$

$$
P_{\text {beam }}[T W]=E_{0}[G e V] I[k A]
$$ is the beam power.

Beam Quality Requirements of High Gain FELs

Acceptable beam emittance is defined by the relation:

$$
\varepsilon \leq \frac{\lambda_{\mathrm{FEL}}}{4 \pi}
$$

Energy spread criteria:

$$
\begin{gathered}
\frac{\Delta E}{E_{0}}<\rho \\
\rho=\frac{1}{2}\left[Z_{0} \cdot \frac{e \bar{n}_{0}^{\prime} c}{k_{w}^{2}} \cdot \frac{e}{m c^{2}} \cdot \frac{K^{2}[J J]^{2}}{4 \gamma_{0}^{3}}\right]^{1 / 3}
\end{gathered}
$$

FEL Saturation

- The electrons oscillates in phase space at synchrotron frequency $\Omega_{s}{ }^{2}=2 D_{2} E / \gamma_{0}{ }^{2}$. As the radiation field E grows exponentially, the bucket height in the phase space increases, and the energy spread of the beam also increases due to the interaction with the radiation field.
- As the radiation power increases, the electron distribution rotates faster and faster in the bucket (i.e. $\Omega_{\mathrm{s}} \propto \sqrt{ } E$), but the growth rate of the field remains nearly the same.
- As a results, when the rotation is faster than growth rate and the rotation reaches near 90 degree in the bucket. The electrons can not radiate energy any more and start to absorb energy from the field. The FEL is said to reach its saturation.

Saturation power can be estimated when the synchrotron frequency Ω_{s} increases to be equal to the growth rate, it is found to be:

$$
E_{s}=\frac{3 \rho^{2} \gamma_{0}^{2}}{2 D_{2}}
$$

Power density for a helical wiggler is:

$$
\frac{\left|E_{s}\right|^{2}}{Z_{0}}=\frac{9}{4}\left(\rho \gamma_{0}\right)^{4} \frac{1}{Z_{0} D_{2}^{2}}=\frac{9}{16} \rho n_{0} c m c^{2} \gamma_{0}
$$

Saturation power is:

$$
P_{s}=\frac{\left|E_{s}\right|^{2}}{Z_{0}} A=\frac{9}{16} \rho n_{0} c A m c^{2} \gamma_{0}
$$

But $n_{0} c A$ is the number of electrons per second, $n_{0} c A m c^{2} \gamma_{0}$ is the electron beam power P_{e}. We have:

$$
\begin{array}{ll}
P_{s} \approx \rho P_{e} & \text { This is an important result because it implies } \rho \text { is the } \\
\text { approximate FEL interaction efficiency!! }
\end{array}
$$

3D effects

- A beam with finite transverse emittance will have certain angular spread that makes the beam expands in size as it propagates along the undulator.
- Planar undulator will have natural focusing force.
- Strong focusing is usually used to keep the beam size nearly constant for effective FEL interaction
- Diffraction of radiation field has to be considered.

Beam Quality Requirements of High Gain FELs

Acceptable beam emittance is defined by the relation:

$$
\varepsilon \leq \frac{\lambda_{\mathrm{FEL}}}{4 \pi} \cdot \frac{\bar{\beta}}{L_{1 D}}
$$

Energy spread criteria:

$$
\begin{gathered}
\frac{\Delta E}{E_{0}}<\rho \\
\rho=\frac{1}{2}\left[Z_{0} \cdot \frac{e_{0}^{2} n_{0} c}{k_{w}^{2}} \cdot \frac{e}{m c^{2}} \cdot \frac{K^{2}[J J]^{2}}{4 \gamma_{0}^{3}}\right]^{1 / 3}
\end{gathered}
$$

First SASE FEL @ Argonne National Lab

First Hard X-ray FEL Facility

LCLS @ SLAC National Accelerator Laboratory

Claudio Pellegrini
nature photonics

First lasing and operation of an ångstrom-wavelength free-electron laser

P. Emma¹^, R. Akre¹, J. Arthur¹, R. Bionta², C. Bostedt¹, J. Bozek ${ }^{1}$, A. Brachmann¹, P. Bucksbaum ${ }^{1}$ R. Coffee', F.-J. Decker', Y. Ding', D. Dowell', S. Edstrom', A. Fisher', J. Frisch1, S. Gilevich¹,
J. Hastings¹, G. Hays¹, Ph. Hering ${ }^{1}$, Z. Huang ${ }^{1}$, R. Iverson ${ }^{1}$, H. Loos ${ }^{1}$, M. Messerschmidt ${ }^{1}$,
A. Miahnahri', S. Moeller ${ }^{1}$, H.-D. Nuhn ${ }^{1}$, G. Pile ${ }^{3}$, D. Ratner ${ }^{1}$, J. Rzepiela ${ }^{1}$, D. Schultz ${ }^{1}$, T. Smith ${ }^{1}$,
P. Stefan', H. Tompkins', J. Turner', J. Welch', W. White', J. Wu', G. Yocky' and J. Galayda ${ }^{1}$

The recently commissioned Linac Coherent Light Source is an X-ray free-electron laser at the SLAC National Accelerator Laboratory. It produces coherent soft and hard X-rays with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources and a range of pulse durations from 500 to $<10 \mathrm{fs}\left(10^{-15} \mathrm{~s}\right)$. With these beam The facility is now operating at X-ray wavelengths from 22 to $1.2 \AA$ and is presently delivering this high-brilliance beam to a growing array of scientific researchers. We describe the operation and performance of this new 'fourth-generation light source'.

Self-amplification of Spontaneous Emission (SASE)

First HGHG Expt. @ Brookhaven National Lab

Direct seeding

SASE with self-seeding

Spectral bandwidth can be reduced significantly. However, large fluctuation in output intensity is expected

High Gain Harmonic Generation

